Stellar Feedback in Orion... And Beyond

Cornelia Pabst

Leiden Observatory

June 23, 2020

Cornelia Pabst, Leiden Observatory

Stellar Feedback in Orion... And Beyond

Outline

Aspects of stellar feedback and star formation:

- kinematics and energetics of star-forming regions
- heating and cooling of the ISM
- transmittance of turbulence into molecular clouds and the dilute ISM
- tracers of star formation in distant galaxies
- regulation of stellar feedback by magnetic fields

Outline

Aspects of stellar feedback and star formation:

- kinematics and energetics of star-forming regions
 ⇒ SOFIA/upGREAT
- heating and cooling of the ISM
 ⇒ SOFIA/upGREAT+HIRMES+FORCAST and JWST
- transmittance of turbulence into molecular clouds and the dilute ISM
 - ⇒ SOFIA/upGREAT+HIRMES+EXES and ALMA
- tracers of star formation in distant galaxies
 ⇒ SOFIA/upGREAT+HIRMES+FIFI-LS
- regulation of stellar feedback by magnetic fields
 ⇒ SOFIA/HAWC+

Disruption of the Orion molecular core 1 by wind from the massive star θ^1 Orionis C

C. Pabst¹, R. Higgins², J. R. Goicoechea³, D. Teyssier⁴, O. Berne⁵, E. Chambers⁶, M. Wolfire⁷, S. T. Suri², R. Guesten⁸, J. Stutzki², U. U. Graf², C. Risacher^{8,9} & A. G. G. M. Tielens¹*

Figure 1: Three infrared images of the Orion Nebula complex (Pabst+2019). a) *Herschel*/PACS and SPIRE dust continuum images (red: SPIRE 250 μ m, green: PACS 160 μ m, blue: PACS 70 μ m). b) Line-integrated [C II] 158 μ m emission, observed by the upGREAT instrument onboard SOFIA. c) *Spitzer*/IRAC 8 μ m image.

Measuring stellar feedback

Figure 2: [C II] pv diagram through the Orion Veil shell (Pabst+2019, Pabst+2020). The lower panel traces the arc structure for an expansion velocity of $13 \,\mathrm{km \, s^{-1}}$ on a background velocity of $8 \,\mathrm{km \, s^{-1}}$ (red dashed lines).

Turbulence and hydrodynamic instabilities

Figure 3: Three-color image of [C II] velocity channels of the southern Veil shell (Pabst+2020). Blue: $v_{\rm LSR} = 0.2 \, {\rm km \, s^{-1}}$, green: $v_{\rm LSR} = 4.6 \, {\rm km \, s^{-1}}$, red: $v_{\rm LSR} = 8.10 \, {\rm km \, s^{-1}}$. The spectra were extracted towards the areas indicated by the numbered circles.

Figure 4: [C II] spectra towards the Veil shell. Each spectrum is averaged over a circle with a radius of 40". Each spectrum consists of multiple line components, which is characteristic of thermodynamic instabilities.

Filaments and molecular globules in Orion

Cornelia Pabst, Leiden Observatory Stellar Feedback in Orion. . . And Beyond

Heating and cooling: efficiency and PAH properties

Cornelia Pabst, Leiden Observatory

Star-formation tracers of the distant universe

Figure 8: [O I] 63 μ m and [C II] 158 μ m as tracers of star formation (and local conditions). Left: Rybak+2020 for $z \sim 6$ dusty star-forming galaxy, right: Pabst+in prep. for Orion Nebula.

The \$1,000,000 Question:

What about magnetic fields?

Image Credit: NASA/JPL-Caltech/WISE Team

Cornelia Pabst, Leiden Observatory

Stellar Feedback in Orion... And Beyond

Magnetic Orion

Figure 9: Magnetic field lines in OMC1 (APOD, Chuss+2019).

Figure 10: Magnetic field lines in the Veil?

Summary

- [C II] map of Orion is an incredibly rich data set, many as yet unexplored features
- need to map large regions at high spectral and spatial resolution efficiently
- a HIRMES-like instrument could provide this for the [O I], [O III] and [N II] FIR lines
- SOFIA can map the two most important FIR cooling lines of the ISM at high spectral and angular resolution
- SOFIA can quantify stellar feedback (ongoing: FEEDBACK C+ Legacy Program)
- SOFIA observations help constrain physical conditions in the ISM
- SOFIA can map PAH properties within a large FoV
- SOFIA helps understand the role magnetic fields play in regulating star formation
- SOFIA provides the "local truth" for star-formation tracers in the distant universe