

Upgrade of the SOFIA Focal Plane Imager FPI+

VIS & NIR Guider and Science Camera FPI++

Enrico Pfueller, DSI

SOFIA Science Instrument Roadmap Workshop

Expand the tracking capability of the SOFIA telescope into the NIR up to about 1.6 μm

- Far-infrared observations in regions of large extinction would profit from NIR tracking, as the number of available tracking stars increases towards longer wavelengths
- Increase sky coverage to 100% in dark clouds (99% all sky)

FPI+ NIR spectral coverage enables science applications requiring Y-, J- and H-band photometry

 Multi-channel capability necessary to study particle sizes and aerosol compositions during stellar occultations by atmospheres, rings or cometary coma

June 22th, 2020

Motivation

The Focal Plane Imager (FPI) is SOFIA's primary tracking camera

- Original camera upgraded in 2013 with commercial EM-CCD camera \rightarrow FPI+
- SOFIA Facility Science Instrument since cycle 4
- Main application: stellar occultations by small solar system bodies (Pluto!)
- Permanently mounted at the SOFIA telescope; available in each mission in addition to any science instrument on the main flange

- Sensitivity: 16^{mag} with $S_{N} = 35$ in 1 sec
- FOV = 8 arcmin diameter
- Speed up to 10 fps full frame
- Up to 400 fps with subframes / binning

FPI+ Current Capabilities

FPI+ Near-Infrared Upgrade Approach

- NIR capability for tracking 1 μ m to 1.6 μ m
- Retain current VIS FPI+ sensitivity with moveable dichroic mirror

Why tracking in the NIR?

- Difficulty to find suitable guide stars in dark clouds; Interesting IR objects "hide" in VIS dark clouds
- There have been observations (HAWC+, FIFI-LS) that could not be scheduled due to missing guide stars

Object: L 1688 RA: 16:28:51.5, Dec: -24:17:03

Left: VIS no stars brighter than R = 16 mag

Right: NIR star with H = 11.4 mag and about 10 stars brighter than H = 14 mag.

June 22th, 2020

NIR Tracking

Dark Cloud and All-Sky Coverage Analysis

• 2892 dark clouds (Lynds, Hartley) analyzed: 96% have V=14mag guide star within FPI+ FOV (UCAC4)

100% have H=14mag guide star (2MASS)

- Number of NIR guide stars in all dark clouds one magnitude larger than VIS guide stars
- All-sky coverage VIS 90%, NIR 99%

Object: L 483 RA: 18:17:29.9, Dec: -04:39:41

Left: no suitable VIS stars for tracking

Right: NIR star with H = 10.4 mag and about 50 stars brighter than H = 14 mag. NIR Tracking

Promising commercial solution for NIR upgrade

First Light Imaging "C-RED One" Camera

- Leonardo Saphira e-APD HgCdTe Array
- 320 x 256 pixel, 24 µm pitch sweet spot for existing FPI+ optics and shear layer seeing
- Pulse tube cooled to 80 K = no consumables
- Very low noise figures
- Optimized towards high frame rates

Plate scales 1.3 ... 1.6 arcsec/pixel appear feasible

Sensitivity analysis of proposed NIR channel

	SNR = 60 (tracking limit)	SNR = 10 (detection limit)
1 s exposure	J=14.0 mag	J=16.3 mag
3 s exposure	J=15.1 mag	J=17.4 mag

Assumptions: EM off (APD gain = 1), M2V type star

Limiting NIR transmission of dichroic tertiary mirror M3-1

Improved M3-1 requirements:

- Shift 50% transmisison to $\lambda > 1.6 \ \mu m$
- Keep FIR reflectance > 95%

Very promising new coating is under investigation

Benefits:

 2 stellar magnitudes improvement of FPI++ NIR sensitivity

June 22th, 2020

• M3-1 spare part

Improved Tertiary M3-1 Mirror

Sensitivity analysis of proposed NIR channel

Current M3-1	SNR = 60 (tracking limit)	SNR = 10 (detection limit)
1 s exposure	J=14.0 mag	J=16.3 mag
3 s exposure	J=15.1 mag	J=17.4 mag
Upgraded M3-1	SNR = 60 (tracking limit)	SNR = 10 (detection limit)
Upgraded M3-1 1 s exposure	SNR = 60 (tracking limit) J=15.8 mag	SNR = 10 (detection limit) J=18.1 mag

- matches or exceeds Andor iXon 888 at comparable V-mag
- does not even consider further sensitivity improvements using avalanche multiplication

Sensitivity analysis of proposed NIR channel

Current M3-1	SNR = 60 (tracking limit)	SNR = 10 (detection limit)
1 s exposure	J=14.0 mag	J=16.3 mag
3 s exposure	J=15.1 mag	J=17.4 mag
Upgraded M3-1	SNR = 60 (tracking limit)	SNR = 10 (detection limit)
1 s exposure	J=15.8 mag	J=18.1 mag
3 s exposure	J=16.9 mag	J=19.2 mag

- matches or exceeds Andor iXon 888 at comparable V-mag
- does not even consider further sensitivity improvements using avalanche multiplication

SNR vs. J-Band Magnitude of M2V-type Star

J-Band Magnitude (M2V-type star)

Science Applications of NIR-upgraded FPI++

- The upgraded FPI++ will partially restore the capabilities of the former instrument combination FLIPO (HIPO + FLITECAM)
- Allows for high-speed observations at two wavelengths simultaneously (VIS & NIR)
- Critical for stellar occultations by bodies with an atmosphere,
 e.g. Pluto, Triton, Titan
 - Atmospheric extinction is wavelength dependent
 - VIS and NIR light is therefore scattered differently in atmospheres
 - Existence/Depth of hazes can be shown
 - Aerosol particle sizes can be determined

12

• Temperature gradients can be verified

- The upgraded Focal Plane Imager FPI++ will enable tracking in the NIR, up to \sim 1.6 μm
- This results in practically 100% sky coverage with usable guide stars even in dark clouds
- The upgraded Focal Plane Imager FPI++ will enable dual wavelengths observations (VIS, NIR) particularly usefull for stellar occultations by solar system bodies with atmospheres

A two-step approach is possible:

Step1

Mechanical and optical design for a second VIS camera Possible benefit for tracking with deep depletion CCD (~ 1 μ m) Would fully prepare the installation of the NIR camera and enable dual wavelength observations (VIS red & VIS blue) Development time < 2 years

Step 2

Replace the second VIS camera with NIR camera when available (~1 year lead time) and characterized in the lab

Summary

Universität Stuttgart

Institut für Raumfahrtsysteme (IRS) Deutsches SOFIA Institut (DSI)

