

SUG November 16, 2017 Page 2

Publication Rate – as of October 30, 2017

Publications are not appearing as expected

 We had anticipated we would reach 30 publications this year with Cycle 3 results, based on an increased rate in 1st quarter of 2017. We will not reach that expectation.

 As a result, significantly more publications in 2018 than in 2017are even more critical.

It is one year to Senior Review

Your scientific interest hangs on SOFIA

- Due dates for clustering papers in a ApJ/A&A journal
- Letters can be faster to publish
- Need pipelines not to delay
- Force faster pipeline processing for high priority Cycle 5/6 data

Senior Review

The Landscape, The Challenge, The Opportunity

- One of the costs of saving SOFIA from cancellation in the US in 2014 was to agree to put it in Senior Review after a 5-year prime mission.
- 5-years is what Great Observatories like Hubble and Chandra have as a prime mission, so this is reasonable and not a snub to SOFIA.
- Yes that was not part of the original deal, but neither was SOFIA being cancelled by the US politicians.
- NASA is building new SOFIA instruments as fast as we can and are fully committed to a long, productive science lifetime for SOFIA.
- Convincing the US science community that SOFIA is worth the cost of continuing is a challenge to the joint US-German SOFIA community.
- SOFIA needs to produce something it has not yet produced prior to the Senior Review.

What we know and what we do not know

- Anticipate a Call For Proposal in late summer 2018 with a 30 page plus budget proposal due in mid/late January 2019
- Senior Review Proposals on 3 year cadence
 We submit a 3 year + 3 year look ahead plan and budget
- We do not know yet if the oral presentation in Feb/March 2019 will be panel or stand-alone
- We do know we need to showcase new results at the oral that are not in the written proposal
 - Must exercise now speed up access/analysis of data from Business as Usual

Senior Review 2019

_

What steps have we taken?

- Hired a Capture Manager October 2017
- Assembled a core team
 - Kick Off Oct 24-26
 - Telecons 2x weekly
 - Monthly face-to-face
- Identified key science areas of exploration dominating the 2019-2025 time frame
 - Presented them to the SIS Nov 14-15
 - Assembling names and guidance to "context experts" to provide 5-6 pages, reworking the schedule to move these earlier (end of January)
- Established list of tasks and deliverables
 - Examples: JWST/SOFIA science actuals, Re-evaluation of instrument complement in extended mission through SIAG process, Cost-reduction operations
- Created a baseline schedule

Core Team

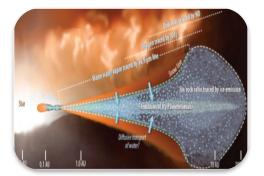
Roles & Areas Tasked

Bill Reach	Science Vision, Sci Ops, Community Engagement
Bob Frey	Capture Manager
Bruce Margon	Experienced Senior Review; Professional Astronomer not FIR expert
Eddy Zavala	Programmatics, Operations and Cost
Hal Yorke	Science Vision
Holger Jakob	German Partner Infusion
Kimberly Ennico	Science Implementation, Cross-community connections
Naseem Rangwala	Community, Science Implementation
Nick White	Messaging, Strategy

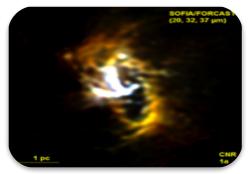
SOFIA's Greatest Hits (1/2)

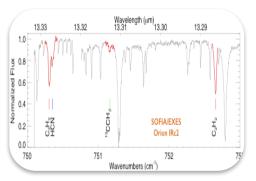
Science Topic	Result	SOFIA Observation
Astrochemistry	Collapse timescale (~1 million yrs) for dense interstellar cores (Nature result) much greater than the expected free fall time. First detection of SH in the ISM – out of equilibrium chemistry despite being in a cold region.	GREAT: Detection of Para-H2D+ APEX: Detection of Ortho-H2D+ (Breunken, S. et al. 2014 Nature, 516, 219) GREAT: SH detection (Neufeld, D. et al. 2012, A&A, 542, L6)
	Detection of water in a massive young stellar object (protostar) in absorption (AFGL 2591)	EXES: H2O detection (Indriolo, N. et al. 2015, ApJL, 802, L14)
	1st discovery of ortho D2H+ in the ISM, a missing piece to computing the time-scales in the earliest phase of star formation	GREAT: Detection of ortho-D2H+ (Gluck, CB et al. 2017A&A600A94G)
Dust formation	First discovery of dust in older supernova remnant that survived the passage of shock. This supports hypothesis that supernovae are responsible for formation of dust in early universe (~1 Gyr after the big bang).	FORCAST: Observation of Sgr A east (Lau, R. et al. 2014 Science 348, 413)
High mass star formation	Infall of material on high mass star forming region	GREAT: NH3 (Wyrowski, F. et al. 2016, A&A, 585, A149.; Wyrowski, F. et al. 2012, A&A 542, L15)
Exoplanetary debris disk	IR excess due to dust processed by an inner asteroid belt rather than from a colder KB.	FORCAST: Epsilon Eridani (Su, K. et al. 2017, ApJ AJ, 153, 5)

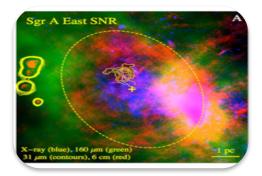
SOFIA's Greatest Hits (2/2)

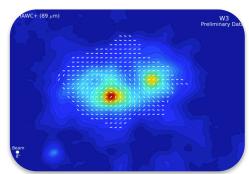


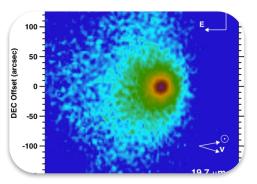
Science Topic	Result	SOFIA Observation
Atmospheres of outer solar system	Evolution (time with season) and properties (haze and asymmetries) of atmospheres	FLIPO: Two Pluto occultations
		FLIPO: Triton occultation
	Enhanced D/H on Mars provide isotopic evidence	EXES: D/H
	of vanished surface water	(Encrenaz, T. et al. 2016, A&A, 586, A62)
	First direct measurement of atomic oxygen in	GREAT: O
	Mars' mesosphere	(Rezac, L. et al. 2015 A&A, 580, L10)


SOFIA Today is aligned to advance these fields...


IR Photometry, High-Resolution Spectroscopy, Polarimetry


Evolution of planetary systems


Physics of extreme environments


Formation of complex molecules

Dust in the universe

Role of magnetic fields

Composition of planetary atmospheres & comets

- We, the SOFIA Science Center & Program Office, welcome your input
- Advocate for the Observatory, not just at SUG meetings
 - Give more talks. Give talks with science context, not just skim the capability description. SOFIA Science Center & Program Office can provide updated content. What do you need?
 - Encourage publications by your peers with SOFIA data (highest priority!)
 - Help organize/advertise/run Community Day workshops in Spring 2018
 - Share with SOFIA Science Center & Program Office info you learn about events/activities in the field that touches SOFIA science
- If you meet 2x yearly, there will be 2 more SUGs before our submission
- We will ask members to be on Senior Review proposal review groups (Blue #1, Blue #1, Pink, Red, ...)