High-Resolution Direct-Detection Spectroscopy with SOFIA

> Gordon J. Stacey Cornell University

Overview

Address the science applications of HIRMES (now cancelled) and why these capabilities should not be lost

- Primary application is the investigation of protoplanetary disks
- Other applications: YSO's, debris disks, comets, gas giant planet atmospheres, fine-structure line imaging of galaxies, O/H, N/O abundances

U Why use direct detection spectrometers?

HIRMES description

Protoplanetary Disks

Over ~ 10 million years, protoplanetary disks evolve into planetary systems

Bulk of mass is H₂ gas (including H₂, O, H₂O), and ices – all critical to theories of planet formation, but challenging to observe.

Far-infrared spectroscopy is critical to our understanding of planet formation – and SOFIA holds the keys

Far-infrared Lines Important

The critical building blocks for the formation of planets include water, oxygen, and molecular hydrogen

□ Water is a key ingredient for life:

Emits strongly in its far-infrared rotational lines, but is nearly impossible to observe from the ground – because of the telluric lines, hence airborne astronomy...

- Oxygen is key ingredient for life:
 - Product of the photodissociation of H₂O, CO₂, and CO ices that are released during collisions between planetesimals.
 - Critical to understanding the formation of the gas and ice giants, and terrestrial planet atmospheres.
- Hydrogen is primary component of protostellar disks, since it carries most of the mass
 - > But its role is poorly understood since it is so difficult to observe.

Water and Ice

- Water is central to our understanding of the formation of habitable worlds
- Beyond the "snow line" is it mostly ice
- Within the habitable zone water is gaseous
 - Terrestrial planets likely form "dry" since this water is photodissociated before incorporation
 - Water transported in from beyond snow line in later phases by icy bodies

Ice Diagnostics

 \square Detect ice through its strongest features near 40 μm in emission

- > Shorter wavelength bands in absorption, since warm (emitting) ice would melt
- Emission arises from small icy grains above the colder disk
- Feature strength & shape yields mass, and ice/rock ratios critical for core-accretion formation models

□ Ice features not available to other facilities so this is not well explored observationally

Molecular Hydrogen: Disk Mass

- Protoplanetary disks are mostly gaseous: Gas:Dust is 100:1 by mass
- Mostly, H₂ a very weak emitter since first (quadrupole) emitting level is 550 K above ground, and the disk temperature is only a few 10's of K
- CO proxy is not very good, since "conversion factor" varies by orders of magnitude ⇒ masses of PPD totally unconstrained
- HD is a good proxy: low-lying128 K, 385 K,) rotational lines
 - ≽ J= 1-0 112 μm
 - ≽ J= 2-1 56 μm

HIRMES could detect the HD 1 – 0 line at 112 μm in disks of masses >10³ M $_{\odot}$ around stars of > 1 M $_{\odot}$. The figure shows model predictions for HD 1–0 line fluxes (circles), along with detections (stars) and upper limits from Herschel-PACS. All models and data are scaled to a distance of 125 pc.

Neutral Oxygen: Disk energetics

[OI] 63.2 μm is typically the most luminous emission line of protoplanetary disks

- Most commonly detected line from disks by Hershel-PACS
 - Interpretation limited by lack of ability to distinguish ~10 km/s disk emission from 100 km/s outflows and shocks.
- HIRMES will produce velocityresolved [OI] spectra of more than 30 protoplanetary disks
 - These data will determine the origins of emission disk/outflows
 - Radial surface energy and mass from 1-100 AU.

Simulated HIRMES spectra of TW Hya (a disk with typical line strengths). The signal-to-noise on [OI] 63.3 μ m (left) and HD 1-0 (right) correspond to 1.5 and 10 hours of observing time with overheads

Far-IR Spectral Line Tomography

Velocity resolve spectral lines

- Place radial distance in the emitting disk assuming Keplerian orbits.
- □ O and H₂O are likely in and around the snow line while HD is external \Rightarrow HD requires less velocity resolution than O and H₂O observations

Uniqueness

- Water, [OI], HD and H₂ detected by Hershel/Spitzer, but not with the resolving power necessary for tomography, and/or at the necessary sensitivity.
- JWST will detect some of these lines, but not at the required resolving power.
- ALMA has so far detected just one water line from PPD many available to HIRMES to outline excitation as a function of distance from the central star.

Why not heterodyne spectroscopy?

Direct vs. Coherent Detection

Direct detection refers to detectors that detect the energy of the photon

- Photo-electrons in semi-conductor, or warming the crystal lattice in a silicon bolometer
- For high resolving powers (10⁵) at 112 μm, interference paths 5.6 m long are necessary (in free space)! – but a FPI folds the path....
- Coherent detection refers to detectors that detect the wave nature of the light
 - Typically coherent detectors measure the source signal that is in phase with a strong monochromatic local oscillator
 - Very high resolution spectroscopy can be performed at low radio frequencies, digitally.

Why Direct Detection?

Direct detection is inherently more sensitive than coherent detection

> Detection of phase leads to "quantum noise": $T_{QN} = \frac{h\nu}{k}$

 $580 < T_{QN} < 130 K$ as 25 μ m < λ < 112 μ m

> Typical noise temperatures are: $5 \cdot T_{QN}$ (DSB) \Rightarrow 5800 to 1300 K

Direct detection devices do not detect phase. In the best case they are "background limited"

> One can show that for reasonably efficient systems ($\tau_{cold}^?$ 20%):

$$T_{BLIP,RJ,SSB} = \frac{T_{warm}}{\sqrt{\tau_{cold}}} \approx 150 \text{ to } 330 \text{ K} (25 - 122 \text{ m})$$

 $T_{BLIP,RJ,SSB} = 160 K (SSB) @ 112 \mu m HD (J = 1 - 0)$

HIRMES

- High resolution (RP ~ 10⁵) far-IR spectrometer based on direct detection
- Selected as the 3rd generation SOFIA instrument
- Close to integration and test cancelled on April 1, 2020 due to cost and schedule overruns – driven by challenges with detectors
- Revival in the cards when these challenges are overcome

PI: Matt Greenhouse (GSFC); FPI developed at Cornell; Science Team Lead (Gary Melnick)

HIRMES Science Working Group							
Investigator	Institution	Investigator	Institution				
Arendt, Richard*	UMBC	Pontoppidan, Klaus	STScl				
Bergin, Edwin	U. Michigan	Richards, Samuel*	USRA				
Bjoraker, Gordon	GSFC	Roberge, Aki	GSFC				
Chen, Christine*	STScI	Rostem, Karwan*	UMBC				
Kutyrev, Alexander	U. Maryland	Stacey, Gordon	Cornell U.				
Melnick, Gary	Harvard U.	Tolls, Volker [*]	Harvard U.				
Milam, Stefanie	GSFC	Su, Kate [*]	U. Arizona				
Moseley, Harvey	GSFC Emeritus	Watson, Dan	U. Rochester				
Neufeld, David	Johns Hopkins U.	Wollack, Edward	GSFC				
Nikola, Thomas [*]	Cornell U.						

SOFIA workshop June 22 * Investigator added via Legacy Science Investigation proposal

2025 Instrument Roadmap

HIRMES Fact Sheet

A direct detection spectrometer covering the spectral range from 25 to 122 μm

- Four spectroscopic modes to HIRMES
 - > High-res mode: $RP \sim 50,000 \rightarrow 100,000$
 - Mid-res mode
 RP ~ 10,000
 - Low-res mode RP ~ 600
 - Imaging spectroscopy mode: RP ~ 2000
- Modes optimized for the science goals.

□ HIRMES uses:

 Background limited bolometers
 Combination of Fabry-Perot Interferometers and gratings

Achieving High RP w/ Fabry-Perots

HIRMES high (top) and				
low (bottom) resolution				
scanning etalons				

Scanning FPI	Central Wavelength	Wavelength Range	Resolving Power	Etalon Diameter
high-R LW	112 μm	86-122 μm	100,000	100 mm
high-R MW	63 µm	50-86 μm	100,000	90 mm
high-R SW	35 µm	25-36 μm	50,000	90 mm
mid-R LW	112 μm	86-122 μm	12,000	90 mm
mid-R MW	63 µm	50-86 μm	12,000	90 mm
mid-R SW	35 µm	25-36 μm	12,000	90 mm
low-R SW	57 μm	50-70 μm	2000	30 mm
Low-R LW	102 μm	80-125 μm	2000	30 mm
	Scanning FPI high-R LW high-R MW high-R SW mid-R LW mid-R SW low-R SW Low-R LW	Scanning FPICentral Wavelengthhigh-R LW112 μmhigh-R MW63 μmhigh-R SW35 μmmid-R LW112 μmmid-R MW63 μmmid-R SW35 μmLow-R SW57 μmLow-R LW102 μm	Scanning FPI Central Wavelength Wavelength Range high-R LW 112 μm 86-122 μm high-R MW 63 μm 50-86 μm high-R SW 35 μm 25-36 μm mid-R LW 112 μm 86-122 μm mid-R LW 35 μm 25-36 μm mid-R MW 63 μm 50-86 μm mid-R MW 53 μm 50-86 μm mid-R SW 35 μm 50-86 μm Iow-R SW 57 μm 50-70 μm Low-R LW 102 μm 80-125 μm	Scanning FPICentral WavelengthWavelength RangeResolving Powerhigh-R LW112 μm86-122 μm100,000high-R MW63 μm50-86 μm100,000high-R SW35 μm25-36 μm50,000mid-R LW112 μm86-122 μm12,000mid-R MW63 μm50-86 μm12,000mid-R MW63 μm50-86 μm12,000mid-R SW35 μm25-36 μm12,000low-R SW57 μm50-70 μm2000Low-R LW102 μm80-125 μm2000

HIRMES fixed etalon imaging filters

HIRMES diffraction gratings

Steps toward Integration and Test

Cryogenic optics alignment verfication

Warm test set-up. Cryogenic test is performed using a fused silica cryostat pressure window.

SOFIA workshop June 22-24: Building the 2020-2025 Instrument Roadmap

7/2/2020

Double-pass alignment test

The grating mechanism carries 3 diffraction gratings and 1 mirror. It provides +/-180 degree rotation with 8 arc-sec precision and stability

The pupil adjust mechanism enables alignment of the HIRMES entrance pupil with the telescope secondary mirror. It provides +/- 3 degrees tile in two axis with 1 arc-min precision and stability

7/2/2020

Key elements of the HIRMES mK cooling system

Each unique observation requires setting 6 mechanisms

Spectroscopy Mode	X Denotes Element in Beam Line							
	HR Scanning FPI	MR Scanning FPI	LR Scanning FPI	Grating	Filters & Fixed FPI	Slit		
High Resolution	Х	Х		Х	Х	Х		
Medium Resolution		Х		Х	Х	Х		
Low Resolution				Х	Х	Х		
Imaging			Х		Х			

Spatial scanning

- Gets above 1/f noise and removes sky background, minimizes losses
- □FPI transmits to blue off-axis
 - Lissajous or Box scan patterns for spectroscopy imaging
 - Scans along slit for high-res modes

Simulated line profile of a rotating disk showing 11 scans at nominal wavelengths to sample the line profile. Additional sampling appears as the source is scanned up and down the slit by ±2 pixels.

7/2/2020

SOFIA workshop June 22-24: Building the 2020-

2025 Instrument Roadmap

Imaging Spectroscopy Mode example:

□ M83: [OIII] × 2, [NIII], [NII] Ionization/stellar populations Obscured star formation \rightarrow Metallicity O/H, N/O \Rightarrow SF history **ΟΙΙΙ**]: 52 μm ➢ Line flux: 6 E-17 W/m² > 12 σ in 15 minutes >30 pointings \Rightarrow 7.5 hours \Box All lines: additional 1 \times 7.5, 2 \times 3.0 hrs \Box Total: 21 hours for complete [OIII] \times 2, [NIII], [NII]

Summary

High resolution direct detection spectroscopy is a unique and compelling niche for SOFIA

Tomographic locations of the building blocks of planetary systems

- >YSO's, debris disks, comets, gas giant planet atmospheres
- The HIRMES spectrometer was funded and built to pursue this science and enabled much more such as:
 - Velocity resolved spectroscopy of galaxies
 - Efficient imaging of galaxies in fine-structure lines
- HIRMES encountered challenges with detector arrays
- Revival of HIRMES in the cards when these challenges are overcome

Thanks!

