Magnetic Fields in Galactic Star Formation

lan W. Stephens SAO Postdoctoral Fellow Center for Astrophysics | Harvard & Smithsonian

> SOFIA Instrument Roadmap Workshop Tuesday, June 23, 2020

Gravity

Gravity + Turbulence + Magnetic Fields

Gravity + Turbulence

Gravity + Turbulence+ Magnetic Fields+ Jets

Column Density, Federrath (2015)

(Sub)millimeter Polarization

Spheroidal grains align with short axis perpendicular to B-field

Lazarian (2007)

(Sub)millimeter Polarization

Girart et al. (2006)

Polarized Emission from Grains

Top Panel: Plotting Polarization "Vectors"

Bottom Panel: Rotate vectors by 90°, call it magnetic field direction

Works pretty darn well for things >100 AU.

5 pc

Planck XXXV Taurus

Planck XXXV

Did **NOT** resolve filaments (10' resolution, ~0.4 pc resolution).

They did find:

- 1) Fields parallel to low density elongations
- 2) Fields perpendicular to high density elongations
- 3) To produce the above, simulations suggest magnetic field energy density must be as strong or stronger than turbulence

Table 1. HAWC+ basic optical specifications.

Band name	Band center (microns)	FWHM Bandwidth (microns)	Pixel size (arcsec)	Beam size (arcsec FWHM)	Polarimetry field of view ^a (arcmin)	Photometry field of view ^a (arcmin)	Instantaneous point-source sensitivity ^b (Jy $s^{0.5}$)
A B C D E	$53 \\ 62 \\ 89 \\ 154 \\ 214$	8.7 8.9 17 34 44	$2.55 \\ 4.02 \\ 4.02 \\ 6.90 \\ 9.37$	$\begin{array}{c} 4.85 \\ (\text{footnote c}) \\ 7.8 \\ 13.6 \\ 18.2 \end{array}$	$\begin{array}{c} 1.4 \times 1.7 \\ 2.1 \times 2.7 \\ 2.1 \times 2.7 \\ 3.7 \times 4.6 \\ 4.2 \times 6.2 \end{array}$	$\begin{array}{c} 2.8 \times 1.7 \\ 4.2 \times 2.7 \\ 4.2 \times 2.7 \\ 7.4 \times 4.6 \\ 8.4 \times 6.2 \end{array}$	$ \begin{array}{c} 1.9 \\ (footnote c) \\ 2.2 \\ 2.0 \\ 1.7 \end{array} $

Harper et al. (2018)

- Bridge Planck and ALMA
- Wavelength range peak for blackbodies of temperatures 13 55 K
 - Particularly important for polarization where signal only ~5% of total intensity
- More sensitive to warmer dust than (sub)millimeter polarimeters
 - More sensitive to diffuse emission

Multiwavelength also tells us grain properties

Kuffmeier et al. (2020)

y x

Ratio Red: >10% scattering

HAWC+, Band-E (214 µm, 18.2"), Chuss et al. (2019) 0.5 hrs total time (~15 min on source)

JCMT Pol-2, Pattle et al. (2017) 21 observations, 14 hours on source

HAWC+, Band-E (214 µm, 18.2"), Chuss et al. (2019) 0.5 hrs total time (~15 min on source)

JCMT Pol-2, Pattle et al. (2017) 21 observations, 14 hours on source

05^s

HAWC+, Band-D (154 µm, 13.6"), Chuss et al. (2019) 0.5 hrs total time (~15 min on source)

JCMT Pol-2, Pattle et al. (2017) 21 observations, 14 hours on source

05^s

HAWC+, Band-C (89 µm, 7.8"), Chuss et al. (2019) 2.4 hrs total time (~0.8 hr on source)

JCMT Pol-2, Pattle et al. (2017) 21 observations, 14 hours on source

Orion

05^s

HAWC+, Band-A (54 µm, 4.85"), Chuss et al. (2019) 3.5 hrs total time (~1 hr on source)

JCMT Pol-2, Pattle et al. (2017) 21 observations, 14 hours on source

5.0%

Orion

BN/K

10^S

05^{\$}

JCMT Pol-2, Pattle et al. (2017) 21 observations, 14 hours on source

HAWC+, Band-E (214 μm, 18.2") Chuss et al. (2019)

HAWC+, Band-E (214 μm, 18.2") Chuss et al. (2019)

HAWC+, Band-E (214 μm, 18.2") Chuss et al. (2019)

HAWC+, Band-E (214 µm, 18.2") Chuss et al. (2019) HAWC+, Band-A (54 µm, 4.85")

Estimates different energy densities

BN/KL shapes field at small scales Helps confine it far out.

Spherical Flux Freezing Model; Myers et al. (2018, 2020) Provides estimate for field strength everywhere

Consistent with flux-freezing. Made possible from large maps (Spherical Flux Freezing Model; Myers et al. (in prep, 2018, 2020) ²³

SOFIA and Filaments

Herschel, Orion

Star Formation is Typically Within Filaments Magnetic Fields?

Perseus

Herschel three-color Image Credit: Sarah Sadavoy

NGC 1333

NGC 1333

Herschel three-color

HAWC+ 214 µm Stephens et al.

HAWC+ 214 μm Soam et al. Stephens et al.

M78 Orion B Apex on Visible Light

NGC 2068

Image: ESO/APEX (MPIfR/ESO/OSO)/T. Stanke et al./lgor Chekalin/Digitized Sky Survey 2

NGC 2071

Glimpse+MIPSGAL, 3.6, 8.0, 24 μm

Dec (J2000)

HAWC+ 214 µm Stephens et al.

Glimpse+MIPSGAL, 3.6, 8.0, 24 μm

NGC 2068

HAWC+ 214 µm Stephens et al.

Dec (J2000) 00' -0°06'

Spitzer IRAC+MIPS, Snake: High-mass Star-Forming Filament

M51, Credit: S. Beckwith (STScI) Hubble Heritage Team, (STScI/AURA), ESA, NASA ³⁵

Spitzer IRAC+MIPS, Snake: High-mass Star-Forming Filament

Dec (J2000)

Near-IR: low densities SOFIA: high densities

Significant Overlap

G34.43+00.24 Foster et al. (2014)

FIELDMAPS: Filaments Extremely Long and Dark: a MAgnetic Polarization Survey PI: lan Stephens

- The Bones of the Milky Way (Zucker et al 2015; 2018)
- Compare to simulations (Smith et al. 2014, 2019)
- 3D Field Morphology
- Giant filaments sheared
 versus compressed
- Can we see fields bend into filaments?

Zucker et al. (2019)

Pilot Legacy Survey Awarded: 15 of 42 hours Full Legacy: 10 Filamentary "Bones"

FIELDMAPS: Filaments Extremely Long and Dark: a MAgnetic Polarization Survey

Pilot Survey Awarded: 15 of 42 hours Full Legacy: 10 Filamentary "Bones"

Galactic SF, Magnetic Fields and SOFIA

- Bridge size-scale between Planck and ALMA
 - Connects dense ISM with Near-IR observations of diffuse ISM
- Great for large maps
 - Quicker than JCMT and can map diffuse areas
 - Southern sources
 - Scan-pol (on-the-fly mapping) makes imaging even faster
 - Greatly would benefit from larger field of view (footprint) and less dead pixels
 - > Band B (62 μ m) for multiwavelength studies
- Infrared guide camera

Ground State Alignment

- Ground State Alignment
 - Polarization of atoms/ions
 - Anisotropic radiation pumps and aligns atoms/ions in media
 - Magnetic field induces precession and realigns atoms/ions

 Potentially tells us the 3D field morphology

Zhang & Yen (2018)

Ground State Alignment

Submillimeter Lines

Species	Transition	Wavelength	max(P)				
[C1]	$3P_1 \rightarrow 3P_0$	610 μm	21 per cent ^a	Species	Transition	Wavelength	$\max(P/\tau)$
[C I]	$3P_2 \rightarrow 3P_1$	370 µm	18 per cent ^b	[C.1	20 20	270	2 pop cont ^d
[C II]	$2P_{3/2}^{\circ} \rightarrow 2P_{1/2}^{\circ}$	157.7 μm	28.5 per cent^a		$3P_1 \rightarrow 3P_2$	570 µm	2 per cent
[O]	$3P_1 \rightarrow 3P_2$	63.2 μm	$4.2 \mathrm{per cent}^a$	loi	$3P_2 \rightarrow 3P_1$	63.2 μm	50.8 per cente
[Si I]	$3P_1 \rightarrow 3P_0$	129.7 µm	20 per cent ^a	[O I]	$3P_1 \rightarrow 3P_0$	145.5 μm	49.1 per cent ^{c}
[Si1]	$3P_2 \rightarrow 3P_1$	68.5 µm	18 per cent ^b	[SI]	$3P_2 \rightarrow 3P_1$	25.2 µm	$30.1 \mathrm{percent}^d$
[Sin]	$2P_{3/2}^{\circ} \rightarrow 2P_{1/2}^{\circ}$	34.8 µm	12.6 per cent ^b	[SI]	$3P_1 \rightarrow 3P_0$	56.3 µm	$45.2 \mathrm{percent}^e$
[S1]	$3P_1 \rightarrow 3P_2$	25.2 µm	3.2 per cent ^a	[Si1]	$3P_1 \rightarrow 3P_2$	370 µm	$2 \mathrm{per cent}^a$
[Fe II]	$a6D_{7/2} \rightarrow a6D_{9/2}$	26.0 µm	4.9 per cent ^a	[Fе п]	$a6D_{9/2} \rightarrow a6D_{7/2}$	26.0 µm	9.9 per cent ^{f}

Emission

Absorption

Zhang & Yen (2018) [C II] Probably best candidate (bright and high polarization)

Ground State Alignment

- Attempted with GREAT by rotating array about axis; analogous to rotating a half wave-plate
 - Miranda Caputo, B-G Andersson, et al.
- Signal detected toward two sources, but seems consistent with instrumental polarization.
- Could possibly be done more efficiently with a very narrow filter with HAWC+

Galactic SF, Magnetic Fields and SOFIA

- Bridge size-scale between Planck and ALMA
 - Connects dense ISM with Near-IR observations of diffuse ISM
- Great for large maps
 - Quicker than JCMT and can map diffuse areas
 - Southern sources
 - Scan-pol (on-the-fly mapping) makes imaging even faster
 - Greatly would benefit from larger field of view (footprint) and less dead pixels
 - \succ Band B (62 µm) for multiwavelength studies
- Infrared guide camera
- Perhaps best telescope to probe Ground State Alignment
 - Potentially provides 3D field morphology
 - Narrow-band filter for HAWC+

Backup Slides

Pillai et al. (2015) Over Filaments ~1 pc in size. What about larger structures?

Glimpse+MIPSGAL, **3.6**, **8.0**, **24** μm

DEC (J2000)

