Large TeraHertz Arrays for SOFIA

SOFIA Focal Plane ~8 arcminutes

135"

0000000

4.7 THz

00000 00 ()()()()()()()()2.0 THz 🔘 \bigcirc \bigcirc \bigcirc () \bigcirc 15" pixels

SOFIA Needs Large Heterodyne Arrays!

STO-2 [CII] On-the-Fly Map of Carina Nebula

Spectral Resolution is Key to Disentangling Complex Lines of Sight

time	: 0.0000	/Users/ckulesa/Downloads/HEAT-DR1-G328.0-Cl.fits	Fits
nbody :	2.8E+0		
	1.2E+0		
	5.5E-1		
	2.5E-1		
Zoom Rot Center	: -301.3929 : -84.00 -226.00 340.00 : 26.27 26.36 119.23	Perspective	

THz Arrays: Why Now? A Confluence of Technologies:

- Mixer technology
- LO technology
- Microfabrication
- IF amplifiers
- Digital signal processing

THz Mixer Evolution (from 2010 SOFIA Asilomar)

GUSTO Observational Objectives: [CII], [OI], & [NII] Surveys of MW and LMC

Herschel CII line of sight (LOS): GUSTO will observe 540,000 LOS's

25 sq. degree LMC Survey

GUSTO Quasioptical Mixer Arrays

1.46 THz 1.9 THz

2x4 [CII]

2x4 [NII]

ON

R

Silicon Lenses

8

2x4 [OI] HEB Array Assembly at SRON 4.7 THz

Back of Array

SRON-TU Delft HEB detector array

erlands Institute for Space Research

- NbN HEBs on 2x2 mm Si chip fabricated at TU-Delft.
- SiO₂ passivation layer to prevent oxidation.
- Spiral Antenna
 - Same mixer works from 1 to 6 THz!

LO Sources: Frequency Multipliers

GUSTO Band 1/2 LO Array P_{out} ~ 15 μW/pixel

LO Sources: 4.7 THz Quantum Cascade Laser

USTC

Phase Grating for GUSTO

Designed, Modelled and Tested-Verified in TUDelft

Manufactured by Arizona State University

TUDelft **SRON**

GUSTO 1x8 Cryogenic LNA block

Noise @ constant Bias @ different temperatures

Flexible 0.3-4 GHz RF line: No more Cryo Coax!

GUSTO Autocorrelator System

- 24 X 5 GHz (Total 120 GHz)
- 24,576 Channels
- 75 W
- 2.5 kg
- 160 x 160 x 160 mm

Realizing a 1024 Heterodyne Array with GUSTO Technology

Incoherent Quasioptical Approach

"POLARBEAR" focal plane array composed of antenna coupled bolometers Arnold, et al. 2012.

Microlens array technology is well developed

MicroLens array

AMKID (KID) detector arrays (APEX)

Microstrip wiring for IF and DC wiring

Kilo-pixel TES for XIFU-Athena developed @ SRON using microstrip wiring structures for k-pixles

Cost/Pixel vs. Size

Walker et al. 2008

SOFIA Kilopixel Coherent Camera (KCAM)

<u>Strawman Bu</u>	<u>idget</u>	<u>Time Line</u>		
Mixers LO's	5M 5M	Detailed Design Component Fabrica	0.5 yr ation 3 yr	
LNAs IF Boxes	1M 1M	I&T	1 yr	
Spectrometer Cryo Mechanical Labor	5M 1M 1M 4M	TOTAL TIME	~4.5 yrs	

TOTAL COST \$23M Leverages off GUSTO/STO NRE

22

Summary

- Technological advancements now make it possible to construct a Kilopixel Heterodyne Camera capable of operation from ~1 to 6 THz.
- Such a camera would increase the science return of SOFIA by more than an order of magnitude per flight and could be constructed within 5 years.