

A Science Vision for SOFIA 3 March 2017

Harold W Yorke

Director, SOFIA Science Mission Operations

SOFIA International Summit: Science Vision 3 March 2017

Setting the Stage (1/3)

- For NASA's space missions, Level 1 requirements are sacrosanct (NPR 7120.5E)
 - Level 1 requirements result from years of careful planning, balancing cost, schedule, risk, and science
 - Changes, when they occur, are generally pre-planned descopes to account for changes of costs, schedule, and/or risk
 - Scope increases are seldom allowed
 - Exception: Herschel-HIFI bands 6 & 7 (1.9 THz receivers)
 - At the time 1.9 THz receiver was at TRL 3-4
- Once launched, hardware upgrades of spacecraft or its instruments are not possible
 - Exception: Hubble Space Telescope

- SOFIA is not a space mission
 - Hardware repairs & updates are in principal possible on a relatively short time scale
 - SOFIA can reinvent itself on a time scale of ~five years
 - Pursuing validation and verification of SOFIA's "Level 1" requirements over many years may not make scientific sense
- SOFIA's current Level 1 requirements are based on decade-old vision
 - What was important then may not be important now
 - Project needs to periodically revisit priorities

- Computer technology advances make existing SOFIA hardware obsolete
 - Repairs of aging electronic components severely hampered (searches on Ebay!?)
 - Loss of corporate knowledge as key personnel leave project
- SOFIA's new instrumentation and observing modes create new demands on the observatory not envisioned a decade ago
 - E.g. MCCS redesign should be a high priority
 - Adding new instruments requires decommissioning old ones

Defining SOFIA's New Vision

- Redefining SOFIA for the next two decades should be a science community effort
 - Input from SOFIA SMO Director and SOFIA Project Scientist is important, but should not be soul source
 - Getting input from community right before SOFIA's Senior Review may be problematic and disruptive
- Current advisory structure is complex
 - SNOPAC (NASA)
 - SOFIA International Summit (NASA/DLR)
 - SOFIA Science Council (USRA)
 - SOFIA Users Group (USRA)
 - GSSWG (DLR)
 - SPOT (NASA)

Hal's Vision for the future SOFIA

- Formulate the most important science accessible to SOFIA based on NASA's vision => "Origins"
- Define how SOFIA can uniquely address this science or uniquely contribute important pieces in synergy with other observatories
 - SOFIA cannot be everything for everyone it is not a general purpose observatory
 - Must make investments and prioritize efforts to focus on the science themes that SOFIA can do well and can do uniquely => wavelength gap between JWST & ALMA

The Wavelength Gap between JWST and ALMA

JWST will offer unprecedented resolution and sensitivity from long-wavelength (orange-red) visible light to the mid-infrared (0.6 to 28 µm).

ALMA offers ~0.01 arcsecond resolution in its highest frequency bands. Band 10 (planned) will extend to 950 GHz (≈ 320 µm).

SOFIA is the only telescope that currently operates in the 28-320 µm wavelength range.

There is great science potential for observing in ALMA-JWST gap.

Major Far Infrared Science Objectives

- Formation of first stars and galaxies in the early universe
 - How and when did the first stars form? => "First Light"
 - What is the subsequent star formation and metal enhancement history?
 - When and how did re-ionization of the universe occur?
 - What were the seeds of Supermassive Black Holes and how did they grow?
- The physics of the interstellar medium and its life cycle
 - How do stars form out of the interstellar medium?
 - Circulation / enrichment / chemical processes of the interstellar medium
 - Supernova explosions & Nova: enrichment, dust formation,
 - Detailed studies of nearby (resolvable) protostars, star forming regions, "mini-starbursts", Galactic Center, starbursts => templates
- Formation of new solar systems in protostellar disks
 - How do the disks and their outflows form and evolve?
 - How are planetisimals built up out of interstellar dust?
 - How do terrestrial and Jupiter-type planets form and interact with the disk?
 - What is the chemical state (pre-biotic?) of material that enters into planetary atmospheres?
- Cometary, planetary, and satellite bodies and atmospheres
 - Characterizing and understanding all constituents of the solar system
 - History of our Solar System
 - Finding and analysing pristine material in comets

Major Far Infrared Science Objectives

- Formation of first stars and galaxies in the early universe

 - How and when did the first stars for CK²=> "First Light" What is the subsequent staroff mation and metal enhancement history? When and how did re-ionizations! the universe occur? What were the seeds of Supermassive Black Holes and how did they grow?
- The physics of the interstellar medium and its life cycle
 - How do stars form out of the interstellar medium?
 - Circulation / enrichment / chemical processes of the interstellar medium
 - Supernova explosions & Nova: enrichment, dust formation,
 - Detailed studies of nearby (resolvable) protostars, star forming regions, "mini-starbursts", Galactic Center, starbursts => templates
- Formation of new solar systems in protostellar disks
 - How do the disks and their outflows form and evolve?
 - How are planetisimals built up out of interstellar dust?
 - How do terrestrial and Jupiter-type planets form and interact with the disk?
 - What is the chemical state (pre-biotic?) of material that enters into planetary atmospheres?
- Cometary, planetary, and satellite bodies and atmospheres
 - Characterizing and understanding all constituents of the solar system
 - History of our Solar System
 - Finding and analysing pristine material in comets

USRA

SOFIA International Summit: Science Vision 3 March 2017

9

How can the Far IR enhance our Understanding of these Basic Science Themes? (1/2)

General Comments

- Dust continuum emission peaks in the Far IR/submm at cosmological redshifts 0 < z < 5
- Many important diagnostic molecular & fine structure lines not available from ground (HD, H₂O/HDO, OH, other hydrids, fs-lines, bending modes of hot complex molecules, high-J CO)
- Far IR/submm atmospheric "windows" do not permit access to all needed diagnostic lines at any given redshift z
- $8 12\mu m$ PAH features shift into Far IR window beyond z > 2.5

Stars, Disks, and Planets

- Structure and characterization of circumstellar disks before, during and after planet-forming stages
- Detection and mapping of large (pre-biotic?) molecules
- Other science: jets and outflows including dust-producing evolved stars, structure and kinematics of molecular clouds and Galactic Center region

How can the Far IR enhance our Understanding of these Basic Science Themes? (2/2)

- Star Formation Activity within nearby Galaxies (1 kpc spatial resolution or better)
- Properties of the interstellar medium (ISM) as a function of location (temperature, density, metallicity, UV radiation hardness and density).
- Star formation rate (SFR) from characteristic Far IR radiation as a function of location (spiral arms, nuclear starburst, etc...) and of local ISM conditions
- Influence of neighboring galaxies on SFR and ISM properties.

Star Formation History

- Population III stars form via H₂ cooling (lowest rotational transitions) of metal-less clouds at cosmological redshifts 10<z<20.
- PAH features and fs diagnostic lines can be used out to reionization epoch to
 - Disentangle radiation due to accretion onto supermassive black holes versus extreme star formation activity
 - Study metallicity history of the universe

How can the Far IR enhance our Understanding of these Basic Science Themes? (2/2)

- Star Formation Activity within nearby Galaxies (1 kpc spatial resolution or better)
- Properties of the interstellar medium (ISM) as a function of location (temperature, density, metallicity, UV radiation hardness and density).
- Star formation rate (SFR) from characteristic Far IR radiation as a function of location (spiral arms, nuclear starburst, etc...) and of local ISM conditions
- Influence of neighboring galaxies on SFR and ISM properties.

Star Formation History

- Population III stars form via H₂ cooling (lowest rotational transitions) of metal-less clouds at cosmological redshifts 10<z<20.
- PAH features and fs diagoria lines can be used out to reionization epoch to
 - Disentangle radiation dugensit accretion onto supermassive black holes versus extreme star formation activity
 - Study metallicity history of the universe

The Wavelength Gap between JWST and ALMA

Spectroscopic sensitivities plotted as spectral survey time in the IR and submillimeter.

The Far IR Surveyor concept has a 4 × 6m off-axis telescope, equipped with R=500 grating spectrometers with 100 beams (at each wavelength) and 1:1.5 instantaneous bandwidth. Detectors are assumed to operate with NEP = 2×10^{-20} WHz^{-1/2}. The SPICA / SAFARI-G curve refers to the new SPICA configuration: a 2.5m telescope with a suite of R=300 grating spectrometer modules with 4 spatial beams, and detectors with NEP=2 $\times 10^{-19}$ WHz^{-1/2}. Advances in instrumentation on a 2.5m facility could improve SPICA substantially the 2.5m probe assumes R=500 grating spectrometers with 15 beams per band, and detector NEP of 4×10^{-20} WHz^{-1/2}, a sensitivity demonstrated in the lab.

From: Bradford, et al. 2016, "A Probe-Class Opportunity for Far-IR Space Astrophysics"

NASA

Where is SOFIA's "Sweet Spot"?

- To obtain highest possible sensitivity, you must cool optics and all detector-visible support structures to 4K
- With SOFIA's warm optics (2.5m; 30-300µm; 220K)
 - 220K black body peaks at ~15µm
 - Normalized to optical/near-IR wavelengths scales by factor 75 (1.3 inch; 400nm-4µm; 17,000K)
 - Optics, support structure, atmosphere contribute to background
 - Chop between target & empty sky
 - Subtract two large numbers for signal
 - Number statistics limit theoretical sensitivity

Where is SOFIA's "Sweet Spot"?

- Alternatively, reduce background radiation F_vΔv by reducing bandwidth Δv => high resolution spectroscopy
 - e.g. GREAT (heterodyne), EXES, HIRMES
 - Detailed studies of emission and absorption lines
- SIAG (Science Instrument Advisory Group) report ranking SOFIA instruments (except GREAT, HAWC+)

Rank	Name	Science Instrument
1	FIFI-LS	Field-Imaging Far-Infrared Line Spectrometer
2	FORCAST	Faint Object InfraRed Camera for the SOFIA Telescope
2	EXES	Echelon-cross-Echelle Spectrograph
4	FLITECAM	First-Light Infrared Test Experiment Camera
5	HIPO	High-Speed Imaging Photometer for Occultations
ISRA	SOFIA Inter	national Summit: Science Vision 3 March 2017 16

- For the science community, SOFIA currently provides the only access to the Far IR in the near future
- SOFIA successor could be lighter-than-air autonomous steerable vehicle (sensitivity is still an issue)
- For a future space-based cryogenic Far IR observatory in the far future, I note
 - Far-IR is not militarily or commercially useful
 - Must conceive, develop, build & test detectors and readout electronics: very little is "off the shelf"
 - Must have a facility that uses detectors in order to develop them
 - Must have a cadre of interested Far IR scientists and engineers

http://www.sofia.usra.edu

