

The Stratospheric Observatory for Infrared Astronomy (SOFIA)

R. D. Gehrz^a, E. E. Becklin^b, A. Krabbe^c, P. Marcum^d, G. Sandell^b, T. L. Roellig^d, E. Young^b, and H. Zinnecker^c

^aUniversity of Minnesota, ^bUSRA, ^cDSI University of Stuttgart, ^dNASA ARC,

This talk is at: <u>http://www.sofia.usra.edu/Science/speakers/index.html</u>

Outline

- SOFIA Description and Status Report
- SOFIA First-Light Images
- SOFIA Performance Specifications
- SOFIA Schedule and General Investigator (GI) Opportunities
- Summary

SOFIA Overview

- 2.5 m telescope in a modified Boeing 747SP aircraft
 - Imaging and spectroscopy from 0.3 μm to 1.6 mm
 - Emphasizes the obscured IR (30-300 μm)
- Operational Altitude
 - 39,000 to 45,000 feet (12 to 14 km)
 - Above > 99.8% of obscuring water vapor
- Joint Program between the US (80%) and Germany (20%)
 - First Light images were obtained on May 26, 2010
 - 20 year design lifetime –can respond to changing technology
 - Ops: Science at NASA-Ames; Flight at Dryden FRC (Palmdale-Site 9)
 - Deployments to the Southern Hemisphere and elsewhere
 - >120 8-10 hour flights per year

The Advantages of SOFIA

- Above 99.8% of the water vapor
- Transmission at 14 km >80% from 1 to 800 µm; emphasis on the obscured IR regions from 30 to 300 µm
- Instrumentation: wide variety, rapidly interchangeable, stateof-the art – SOFIA is a new observatory every few years!
- Mobility: anywhere, anytime
- Twenty year design lifetime
- A near-space observatory that comes home after every flight

38th COSPAR Scientific Assembly, Bremen, Germany, 21 July 2010

JSRA

The SOFIA Observatory

Nasmyth: Optical Layout

Back End of the SOFIA Telescope

38th COSPAR Scientific Assembly, Bremen, Germany,21 July 2010

R. D. Gehrz

SOFIA First Generation Instruments

6/16/2009

38th COSPAR Scientific Assembly, Bremen, Germany,21 July 2010

Photometric Sensitivity and Angular resolution

SOFIA is as sensitive as ISO

SOFIA is diffraction limited beyond 25 μ m (θ min ~ λ /10 in arcseconds) and can produce images three times sharper than those made by Spitzer

38th COSPAR Scientific Assembly, Bremen, Germany, 21 July 2010

USRA

Early Science with FORCAST and GREAT

<u>Faint Object infraRed Camera for the</u> <u>SOFIA Telescope (FORCAST)</u>

- Mid IR, two-channel camera
- 0.75"/pixel 4-8 μm,16-40 μm
- **R** = 200 grisms beyond early science

<u>German</u> <u>REceiver for Astronomy</u> at <u>Terahertz frequencies (GREAT)</u>

- Heterodyne spectrometer
- Dual-channel 1.6-1.9 THz, 2.4-2.7 THZ (111-125 μm, 158-188 μm)

38th COSPAR Scientific Assembly, Bremen, Germany,21 July 2010

R. D. Gehrz

JSRA

SOFIA First Generation Instruments 10⁸ The Eight First Generation SOFIA **10**⁷ Science Instruments (SIs) **10⁶ Early Science SIs** Spectral resolution GRE/T CASIMIR 10⁵ **EXES 10**⁴ FLITECAM **FIFI LS 10**³ w/ grisms FORCAST w/ grisms 10² **HIPO 10**¹ FORCAST **FLITECAM** HAWC **10**⁰ 10 100 1000 1 Wavelength [µm]

6^{//}16/2009

38th COSPAR Scientific Assembly, Bremen, Germany,21 July 2010

R. D. Gehrz **11**

SOFIA's FORCAST First-Light Images: M82

38th COSPAR Scientific Assembly, Bremen, Germany, 21 July 2010

USRA

SOFIA's FORCAST First-Light Images: Jupiter

Early General Observer Opportunities

- <u>First light images</u> were obtained with FORCAST on May 25, 2010
- <u>Early Short Science</u> begins during 2010 with FORCAST and GREAT
 - Teams have been selected
 - Very limited number of flights (~3 per instrument)
 - GO's will not fly
- <u>Early Basic Science for General Investigators (GIs)</u> with FORCAST and GREAT
 - Longer period (~15 Flights) during early 2011
 - The SOFIA Basic Science Call will be released on April 19, 2010; Due date is July 30, 2010
 - http://www.sofia.usra.edu/Science/proposals/basic_science/index.html
- General Investigator (GI) Science
 - Next call for proposals will be in 2011
 - Flights rate ramps up to over 100 per year by 2014

SOFIA Instrumentation Development Program

- The second call for instruments expected in 2011
- The instrumentation development program will include:
 - New Facility and PI Class science instruments
 - Upgrades to present instruments
 - New technology investigations
- There will be additional calls every 3 years
- There will be one new instrument or upgrade per year
- Funding for new instruments and technology is ~\$10 M/yr

JSRA

Summary

- The Program is making progress!
 - > Open door flights began in December 2009
 - First light was achieved on May 26, 2010
 - Science flights will begin in late 2010
- SOFIA will be a premier facility for far-IR and submm astronomy for many years

This talk: <u>http://www.sofia.usra.edu/Science/speakers/index.html</u>

BACKUP

38th COSPAR Scientific Assembly, Bremen, Germany,21 July 2010

R. D. Gehrz

SOFIA's First-Generation Instruments

Instrument	Description	Institution and PI	λ range (μm) Resolution (λ/Δλ)	Field of View Array Size Array Type	Date Available
FORCAST (Facility SI)	Faint Object InfraRed CAmera for the SOFIA Telescope: Facility Instrument - mid-IR camera and grism spectrometer	Cornell University T. Herter	5 - 40 R ~ 200	3.2' x 3.2' 256 x 256 @ 0.75" Si:As, Si:Sb	2010
GREAT	German REceiver for Astronomy at Terahertz Frequenceies: PI Instrument – heterodyne spectrometer	MPlfR, KOSMA, DLR-WS R. Güsten	60-200 R = $10^6 - 10^8$	Diffraction Limited Single pixel heterodyne	2010
FIFI-LS (Facility SI - like modes)	Field Imaging Far-Infrared Line Spectrometer: PI Instrument with facility-like capabilities – imaging grating spectrometer	MPE, Garching A. Poglitsch	42 - 210 R = 1000 - 3750	30" x 30" (Blue) 60" x 60" (Red) 2 -16 x 5 x 5 Ga:Ge	2011
НІРО	High-speed Imaging Photometer for Occulation: Special PI Instrument – high speed imaging photometer	Lowell Observatory E. Dunham	0.3 – 1.1 R = UBVRI; custom NB filters	5.6' x 5.6' 1024 x 1024 @ 0.05" or 0.33" CCD	2012
FLITECAM (Facility SI)	First Light Infrared Test Experiment CAMera: Facility Instrument – near-IR test camera and grism spectrometer	UCLA I. McLean	$\begin{array}{c} 1-5\\ R\sim 2000 \end{array}$	8.2' x 8.2' 1024 x 1024 @ 0.48" InSb	2012
CASIMIR	CAltech Sub-millimeter Interstellar Medium Investigations Reciever: PI Instrument – Heterodyne Spectrometer	Caltech J. Zmuidzinas	$200 - 600 R = 3 \times 10^4 - 4 \times 10^5$	Diffraction Limited Single pixel heterodyne	2012
HAWC (Facility SI)	High-resolution Airborne Wideband Camera: Facility Instrument – far-IR bolometer camera	University of Chicago D. Harper	50-240 R = 5 - 10	Diffraction Limited 12 x 32 Bolometer	2013
EXES	Echelon-Cross-Echelle (EXE) Spectrograph: PI Instrument – echelon spectrometer	University of California Davis M. Richter	$R = \frac{5 - 28}{10^4, 10^5, \text{ or}}$	5" to 90" slit 1024 x 1024 As:Si 1" – 4" slit width	2013

Line Sensitivities with Spectrometers (4 σ in 900 sec on source time)

R. D. Gehrz

Primary Mirror Installed Oct. 8, 2008

