Exploring ISM and Star Formation Physics in the LMC and SMC in the SOFIA Era Julia Roman-Duval (STScI) October 20, 2016

SOFIA Meeting - October 20, 2016

The complexity of the ISM

Multi-Physics

Multi-Scale (complex geometries)

Multi-Phase

Biased tracers (Excitation, chemistry)

Confusion/beam <u>dilution</u>

Distance ambiguity

LMC R136

eeting - October 20, 2016

Star Formation Relation

Complex ISM physics of SF and feedback lead to remarkably universal SF relation in dense gas

The Magellanic Clouds as laboratories for ISM/SF physics

- LMC/SMC (currently) only 2 galaxies where ISM processes can be resolved at the level of individual stars and clouds while also getting the broad spatial coverage needed understand the ISM on global scales
 - Providing context to ISM Processes is much easier there than in the MW
 - Sub-GMC-scale studies of SF relation possible (See Talk by B. Ochsendorf)
- LMC has face-on geometry
 - HI disk is ~120 pc thick (Elmegreen+2001)
 - SMC elongated along l.o.s with complex velocity structure
- Metallicity of LMC (0.5 solar) and SMC (0.2 solar) span metallicity of galaxies at the peak of cosmic star formation

Image credit: ESA/NASA/JPL-Caltech/STScl

LMC

1 kpc

Herschel 250 mic Herschel 100+160 mic Spitzer 24+70 mic

ATCA HI 21 cm MAGMA CO MCELLS Hα

Coverage: 8x8deg²

Resolution: 15 pc (limited by HI)

Herschel 250 mic Herschel 100+160 mic Spitzer 24+70 mic

ATCA HI 21 cm NANTEN CO SHASSA Hα

Coverage: 40deg²

Resolution: 45 pc (limited by CO)

SOFIA Meeting - October 20, 2016

Dust maps

Dust modeling built in a probabilistic SED fitting framework yields dust surface density and temperature maps (Gordon+2014, Roman-Duval+2014)

Outline

- ISM structure is a determinant factor in the SF process
 - What are the effects of metallicity on the structure of the ISM?
- How can we trace the ISM at low (and solar) metallicity?
- What the effects of metallicity on the SF process?
- How do dust properties change at low metallicity and how does this affect our understanding of the ISM and SF?

Effects of Metallicity on ISM structure

Effects of metallicity on ISM structure and composition: CO distribution

- Dust abundance and shielding is reduced
 - Higher gas column density required to form CO
 - Filling factor of dense ISM reduced

Effects of metallicity on CO and H₂ structure

Small Filling Factor of dense ISM

Lack of dust shielding leads to small filling factor of CO gas in LMC and SMC

 $M(HI) = 4 \times 10^8 M_{\odot}$ $M^{CO}(H_2) = 10^7 M_0$ $M^{dust}(H_2) = (1-6) \times 10^7 M_0$

HI **SPIRE 250** Ηα

 $M^{CO}(H_2) = (0.07 - 0.4) \times 10^7 M_{\odot}$ $M^{dust}(H_2) = (0.2-2) \times 10^7 M_0$ SOFIA Meeting - October 20, 2016

 $M(HI) = 3.5 \times 10^8 M_{\odot}$

16

Comparison to M51

CO from PAWS (Schinnerer+2013, PdBI)

$M(HI) = 2.8 \times 10^9 M_o$ $M^{CO}(H_2) = 6.2 \times 10^9 M_o$

Characterizing CO structure at low metallicity with ALMA

- Cycle 4 ALMA program to map 12CO, 13CO, C18O 1-0 and 2-1
 6 regions in LMC and SMC spanning range of G₀
- Tony Wong has another program to map 4 more regions

SOFIA Meeting - October 20, 2016

Characterizing CO structure at low metallicity with ALMA

Follow up with SOFIA in CII?

SOFIA Meeting - October 20, 2016

Tracing the low-metallicity ISM with FIR spectroscopy

Dust-based H₂ maps

- The CO-dark H₂ can be traced from its dust emission
 - $\Sigma(H_2) = G/D \times \Sigma_{dust} \Sigma(HI)$ (See Jameson+2016)
 - Large systematic uncertainties (x2-3) due to degeneracy between dust mass/emissivity and G/D uncertainty and variations

SOFIA Meeting - October 20, 2016

SOFIA can observe [CII] in the LMC

- Okada+2015 mapped N159 (LMC) in [CII] with GREAT
- [CII] more extended than CO 3-2 (black contours, from APEX)

SOFIA can observe [CII] in the LMC

- Okado+2015 mapped N159 (LMC) in [CII] with GREAT
- [CII] more extended than CO 3-2 (black contours, from APEX)

[CII] velocity structure in N159

Characterizing the ISM in 30-Dor

- Wealth of FIR data in LMC 30-Doradus (Chevance+2016)
 - Herschel PACS, SPIRE/FTS, Spitzer/IRS, Mopra, Aste

03:00

04:00

05:00

69:06:00

01:00

Declination

Tracing H₂ in 30-Dor with [CII]

- PDR modeling provides density distribution and radiation field
- CII originates in hot, dense molecular gas

Herschel Spectroscopic Survey of the SMC (HS³)

Results from HS³

"The GREAT [CII] Account of the Low-Metallicity ISM in the SMC"

> PI Herrera-Camus (MPE) *Herrera-Camus, in prep*

How much [CII] comes from ionized gas?

- [CII] emission originates both in ionized and atomic/molecular gas
- [NII]/[CII] ratios can help quantify fraction of [CII] from ionized gas

Does [CII] trace atomic or molecular gas?

- [CII] emission originates both in ionized and atomic/molecular gas
- [OI]/[CII] ratios can help quantify fraction of [CII] from atomic gas

Jameson+, in prep

SOFIA Meeting - October 20, 2016

Does [CII] trace atomic or molecular gas?

Cooling rates from Wolfire+ *in prep*

Evidence that the [CII] emission originates in molecular gas

SOFIA GREAT [CII] 158 μ m line for one pointing (#7) in SWBarN

SOFIA in LMC/SMC

Large systematic uncertainties on dust emissionbased molecular gas

→ SOFIA/(up)GREAT in more regions!

Tracing the ISM at sub-cloud scales with extinction

Extinction mapping with HST

- High-resolution, deep extinction mapping with multi-band HST imaging (WFC3+ACS)
 - Dalcanton+2013, Gordon+2016
- Fit SED toward each star with dust+stellar atmosphere model

Probing ISM structure with HST and ALMA

- Fit geometrical model to ensemble of individual A_v toward each stars (Dalcanton+2013) to derive extinction maps
- Trace CO at similar resolution with ALMA

SOFIA Meeting - October 20, 2016

The Truth may not be so local anymore!

Effects of Metallicity on kpc-scale star formation relation

Effects of metallicity on SF timescales

- Trace H₂ from dust (FIR) or FIR fine structure line ([CII], [NII], [OI]) from SOFIA/Herschel
- Trace SF from MIR and H α (or YSOs)

Effects of metallicity on SF timescales

- Molecular depletion times on 1 kpc scale in LMC and SMC (0.5 Gyr) are slightly shorter than in disk galaxies (2 Gyr), possibly indicating a recent burst in SF
- No clear dependence on metallicity

SF timescales vs resolution

- LMC/SMC are the rare galaxies where we can estimate the effects of resolution on the SF relation
- Variations of τ_{dep} and $\sigma(\tau_{dep})$ due to spatial separation of gas and SFR tracers and sampling of different evolutionary stages of SF (Kruijssen & Longmore 2014)

Variations of Dust Properties with Metallicity: systematic uncertainties on gas mass estimates

Dust properties in the LMC and SMC

 $\tilde{S}(P)$

0.0

_0.8 ∑

- Dust properties in LMC and SMC differ from MW
 - Extinction curves
 - Depletions
 - FIR SED (spectral emissivity index)
- Significantly affects radiative transfer, shielding, and therefore SF

G/D in the LMC and SMC

- Dust-to-gas ratio increases non-linearly with metallicity?
 - LMC: G/D = 380 +/- 150
 - SMC: G/D = 1200 +/- 400
- Large systematic uncertainties on emission-based G/D affects ability to estimate H₂ in low-Z galaxies

Roman-Duval+2014 Herschel HERITAGE key-project PACS 100, 160 μm SPIRE 250, 350, 500 μm

G/D vs Surface Density

- Dust-to-gas ratio variations with surface density (Roman-Duval+, in prep)
 - Obtained from stacked Planck data
 - Surface density range bridges ISM and CGM
- WARNING: Dust-based H₂ masses assume constant G/D!!!!

Metal Evolution and TrAnsport in the Large Magellanic Cloud (METAL)

- Systematic uncertainties on FIR dust emissionbased G/D estimation is large (emissivity/mass degeneracy)
 - FIR emissivity environmental variations poorly constrained (factor of 2-3)
- FIR emission does not constrain dust composition
- Probe dust abundance and composition with HST UV absorption spectroscopy ($A_v < 1.2$)

Dust Composition and Size with METAL

METAL will constrain how dust abundance and composition varies with environment within the LMC and how it differs from the SMC and MW

FIR emissivity mapping

- WFC3 images in UV-NIR will provide extinction maps
- Comparison to Herschel FIR emission will yield dust FIR emissivity

M31 (PHAT) Gordon+2016 Arab+, in prep

What next?

PAH Properties in the LMC/SMC?

- Characterize 7.7 μ m/11.3 μ m with FORCAST spectroscopy?
 - Environmental dependence (radiation field, surface density)
- SMC has Spitzer/IRS spectroscopic observations, LMC more limited

PDRs with JWST

NIR-MIR spectral maps of molecular clouds to characterize dust composition, PAHs, ices...

Dust and ices with JWST

JWST launch is 2 years away!

This is not the end!

Thank you