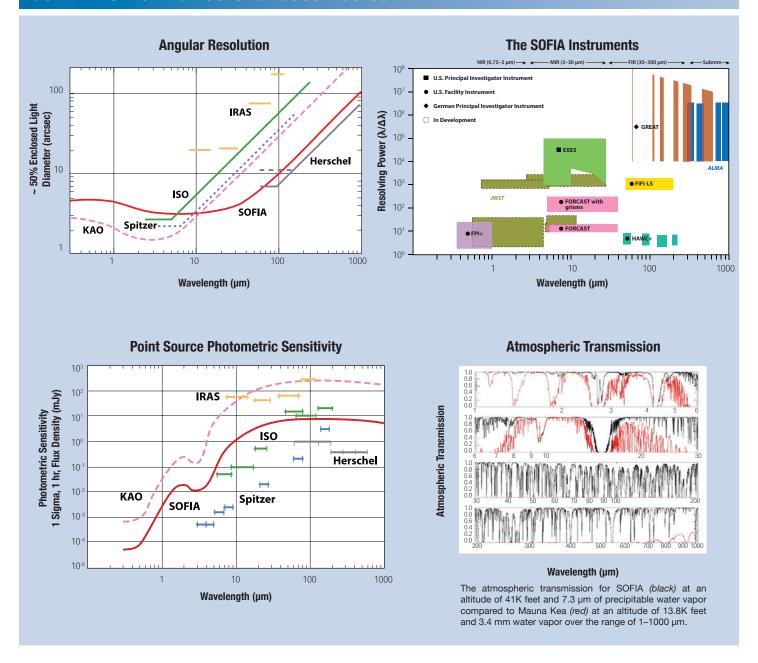


Stratospheric Observatory For Infrared Astronomy TECHNICAL INFORMATION

The SOFIA observatory consists of a Boeing 747SP aircraft carrying a telescope with an effective diameter of 2.5 meters to altitudes between 12 and 14 km (39,000 to 45,000 ft). At those altitudes, SOFIA is above more than 99 percent of Earth's atmospheric water vapor. SOFIA is a joint project of NASA and the DLR (German Aerospace Center), designed to provide a world-class infrared and submillimeter-wavelength observatory for the next two decades.

SOFIA System Characteristics

Nominal Operational Wavelength Range	0.3 to 1600 μm
Primary Mirror Diameter	2.7 meters
Effective Aperture Diameter	2.5 meters
Optical Configuration	Bent Cassegrain with chopping secondary mirror and flat folding tertiary
System f-ratio	19.6
Primary Mirror f-ratio	1.28
Telescope Elevation Range**	23 to 57 degrees (approx.)
Field-of-View Diameter**	8 arcmin
Maximum Chop Throw on Sky**	± 4 arcmin


Image Quality of Observatory System	Diffraction-limited at $\lambda \geq 30~\mu m$ (corresponds to 2.7 arcsec FWHM at 30 $\mu m)$
Chopper Frequencies	1 to 20 Hz for 2-point square-wave chop
Pointing Stability	\leq 0.4 arcsec (radial rms) for sidereal targets \leq 1.0 arcsec (radial rms) for non-sideral targets
Pointing Accuracy	0.3 arcsec (radial rms) with on-axis focal plane tracking
Total Telescope Emissivity*	${\leq}14.5\%$ over 8.45–8.75 μm bandpass with dichroic tertiary
Observatory System Polarization	≤1.8% across 40–300 µm
Recovery Air Temperature in Cavity (Optics Temperature)	240 K

^{*} Estimated value ** Unvignetted

Science Instruments

Name	Principal Investigator	Description	Wavelength Range Resolving Power R = $\lambda/\Delta\lambda$	Field of View Features
EXES	Matthew Richter, UC Davis	Mid-IR Echelle Spectrometer PI Instrument	$4.5 - 28.3 \mu m$ R = 1,000 - 10^5	1" – 180" slit lengths 1024x1024 Si:As
FIFI-LS	Alfred Krabbe, DSI	Far-IR Imaging Grating Spectrometer Facility Instrument	51 – 200 μm R = 600 – 2,000	30" x 30" (Blue) 60" x 60" (Red) 2x(16x25) Ge:Ga
FORCAST	Terry Herter, Cornell University	Mid-IR Camera & Grism Spectrometer Facility Instrument	5 – 40 μm R = 100 – 300	3.2' x 3.2' 2x(256x256) Si:As, Si:Sb
GREAT	Jürgen Stutzki, University of Cologne	Far-IR Heterodyne Spectrometer PI Instrument	$63 - 612 \mu m$ $R = 10^6 - 10^8$	diffraction limited heterodyne receiver
HAWC+	Charles Dowell, JPL	Far-IR Bolometer Camera & Polarimeter Facility Instrument	$50 - 240 \ \mu m$ $\Delta \lambda = 9 - 43 \ \mu m$	from 1.4' x 1.7' (53 μm) to 4.8' x 6.1' (214 μm) 3x(32x40) bolometer
FPI+	Jürgen Wolf, DSI	Focal Plane Imager Facility Instrument	0.36 – 1.10 μm R = 0.9 – 29.0	8.7' x 8.7' 1024x1024 CCD

SOFIA Performance Characteristics

Science Instruments — Recent and Upcoming Developments

GREAT has been upgraded to run in upGREAT or 4GREAT configurations. The upGREAT Low Frequency Array (LFA) is a dual polarization, 2x7 pixel array operating at ~ 1.9 THz, and the upGREAT High Frequency Array (HFA) is a 1x7 pixel array operating at 4.745 THz. 4GREAT has four single-pixel channels that observe the same position on the sky simultaneously. Their central frequencies are 0.43, 1.00, 1.37, and 2.54 THz.

