

SOFIA Science Instruments

Erin Smith NASA Ames Research Center John W Miles Universities Space Research Association

August 27, 2013

First Generation Science Instruments

Science Instrument	Туре*	Developing Institution	Principal Investigator	Instrument Description
FORCAST	FSI	Cornell University	Herter	Simultaneous Dual Channel Imaging and Grism Spectroscopy (5-25 μ m & 25-40 μ m)
GREAT	PSI	Max Planck Institute, Bonn	Güsten	High Resolution (R > 10 ⁶) Heterodyne Spectrometer (1.6-1.9 THz; 2.4-2.7 THz; 4.7 THz)
HIPO	SSI	Lowell Observatory	Dunham	Visible Light High-Speed Camera (0.3-1.1 μ m)
FLITECAM	FSI	UCLA	McLean	Near Infrared Imaging and Grism Spectroscopy, (1-5.5 μ m); Can be used in combination with HIPO
FIFI-LS	PSI ₩ FSI	University of Stuttgart	Krabbe	Dual Channel Integral Field Grating Spectrometer (42-110 μ m; 100-210 μ m)
EXES	PSI	UC Davis	Richter	High Resolution (R > 10 ⁵) Echelle Spectrometer (5-28 μ m)
HAWC 🕅 HAWC+	FSI	University of Chicago 🕅 JPL	Harper 🕅 Dowell	High-Angular Resolution Wide-Band Camera with 4 Channels (50 μ m, 100 μ m, 160 μ m, 200 μ m)

*FSI: Facility Class Science Instrument; PSI: PI Class Science Instrument; SSI: Special Purpose Science Instrument

FLITECAM

First-Light Infrared Test Experiment CAMera Principal Investigator: Ian McLean, UCLA Facility-class Science Instrument

- § Early Science flights logged
 - > 4 flights conducted in the FLIPO configuration
- § Cycle 1 flights logged
 - 2 FLIPO commissioning flights completed, including exoplanet observation (½ flight)
- § Long wavelength stray light issue solved by improving baffling around the 4 K filter wheel
- § Suffered and repaired another detector electronics failure using spare parts
 - Developing plans for detector electronics upgrade
- § Currently working issue with shortened helium hold time, causing us to postpone FLITECAM commissioning to 2014

FLITECAM Performance

FLITECAM	
Description	Wide-field imager with grism spectroscopy
Wavelength Range	1-5.5 μm
Detector	Raytheon Aladdin III InSb
Array Format	1024×1024
Pixel Scale	0.475″
FOV	8'×8'

EXES

Echelon Cross Echelle Spectrograph Principal Investigator: Matt Richter, UC Davis PI-class Science Instrument

- § Instrument cold for laboratory verification of flight configuration and performance capability metrics
- § Pre-Ship Review scheduled 18-Dec-2013
- § EXES ships to Palmdale in February 2014
- § EXES scheduled to install on aircraft 14-Mar-2014
- § Commissioning flights planned in late March and November 2014

SOFIA Users Group 2013-Nov-18

EXES Performance

EXES				
Description	High-resolution echelle spectrometer			
Wavelength Range	4.5-28.3 μm			
Detector	Raytheon Si:As			
Array Format	1024×1024			
Spectral Resolution	50,000-100,000 5,000-20,000 1,000-3,0		1,000-3,000	
Slit Length	Up to 45" Up to 180"		180″	

SOFIA Users Group 2013-Nov-18

GREAT

German REceiver for Astronomy at THz Frequencies Principal Investigator: Rolf Güsten, Max-Planck-Institut für Radioastronomie PI-class Science Instrument

§ Flights logged

- > 18 flights conducted during Early Science in 2011
- 2 commissioning flights completed: L1, L2, M channels
- 13 Cycle 1 flights completed, including 9 on deployment to New Zealand
- § H channel will be ready next year
- § upGREAT in work with three 7-pixel heterodyne receiver arrays
 - > upGREAT commissioning planned for Jan-Feb 2015

GREAT Performance

Dual-channel high-resolution ($R \ge 10^6$) heterodyne spectrometer

Front-End	Frequencies (THz)	Wavelength (µm)	T _{sys}	Astronomical Lines
L1 _a	1.262-1.396	237.6-214.7	1860 K	CO(11-10), CO(12-11), OD, SH, H ₂ D ⁺ , HCN, HCO ⁺
L1 _b	1.432-1.523	209.4-197.0	1900 K	⁽¹²⁾ CO(13-12), ⁽¹³⁾ CO(13-12), [N II]
L2	1.800-1.910	166.6-157.1	2500 K	NH ₃ (3-2), OH(² Π _{1/2}), CO(16-15), [C II]
M _a	2.495-2.519	120.2-119.1	5000 K	⁽¹⁶⁾ OH (² Π _{3/2}), ⁽¹⁸⁾ OH (² Π _{3/2})
M _b	2.67–2.68	112.3–111.9	TBD	HD(1-0)
Н	4.745	63.18	TBD	[O I]

HAWC+

High-resolution Airborne Wideband Camera Principal Investigator: Al Harper, University of Chicago 😿 Darren Dowell, JPL Facility-class Science Instrument

- § Completed development at University of Chicago; shipped to JPL in June 2013 for upgrade with new larger-format detectors and polarimeter
- § Completed HAWC+ SRR 8 May 2013
- § Completed HAWC+ PDR 15-16 Aug 2013
- § Completed ADR cold test Oct 2013
- § CDR scheduled 14-15 Jan 2014
- § Delivery and commissioning planned for Summer 2015.

HAWC+ Performance

HAWC						
Description	Diffraction-limited imager and polarimeter					
Wavelength Range	50-240 µm	50-240 μm				
Detector	TES BUG with SQUID multiplexer					
Array Format	Two 32×40 butted to 64×40					
Band	53 <i>µ</i> m	63 <i>µ</i> m	89 <i>µ</i> m	155 <i>µ</i> m	216 <i>µ</i> m	
Pixel Scale	2.55″	3.97″	3.97″	6.81″	9.08″	
FOV	1.7′×2.7′	2.6′×4.2′	2.6′×4.2′	4.5′×7.3′	6.1′×9.7′	
MDCF (mJy)	120	110	100	80	70	
Minimum Flux Density for Polarization Measurements [*] (Jy)	10	9	9	7	5	

*Uncertainty in the measured percent polarization $\sigma(P) < 0.3\%$ in 1 hr

FORCAST

Faint Object InfraRed CAmera for the SOFIA Telescope Principal Investigator: Terry Herter, Cornell University Facility-class Science Instrument

- § Flights logged
 - 16 flights conducted during Early Science in 2010 and 2011
 - > 7 commissioning flights completed
 - 8 out of 11 planned Cycle 1 flights completed (8 flights canceled due to govt shutdown)
- § FORCAST commissioning report in work
 - > Draft in review
 - > Acceptance Review probably next March
- § G4 grism is not usable due to ghost spectra
 - Grism and its mount was replaced for Cycle 1 following previous failure due to mechanical stress
 - Replacement G4 grism (both primary and spare) have a periodic ruling error that causes the ghost
 - > Working with Zeiss to solve ruling error
 - > One Cycle 2 award is affected.

SOFIA Users Group 2013-Nov-18

FORCAST Performance

FORCAST					
Description	Dual-channel imager with grism spectroscopy				
Wavelength Range	5-25 μm	25-40 μm			
Detector	DRS Tech Si:As BIB DRS Tech Si:S				
Array Format	256×256				
Pixel Scale	0.768″				
FOV	3.4′×3.2′				

HIPO

High-speed Imaging Photometer for Occultations Principal Investigator: Ted Dunham, Lowell Observatory PI-class Science Instrument

- § Early Science flights logged
 - 9 flights conducted, including the June 2011 Pluto occultation flight (4 of these flights were in the FLIPO configuration)
- § Cycle 1 flights logged
 - 3 HIPO commissioning and observatory engineering flights completed
 - 2 FLIPO commissioning flights completed, including exoplanet observation
- § Installed new CCD detectors with faster readout and better AR coatings
- § Installed a new FLIPO beamsplitter with lower emissivity and better HIPO red channel transmission

HIPO Performance

HIPO		
Description	Dual-channel high speed	d imager
Wavelength Range	0.3-1.1 μm	
Detector	e2v CCD47-20	ation_
Array Format	1024×1024	integr
Pixel Scale	0.33″	0.5 s 1(
FOV	5.6′×5.6′	N for

SOFIA Users Group 2013-Nov-18

FIFI-LS

Field-Imaging Far-Infrared Line Spectrometer Principal Investigator: Alfred Krabbe, University of Stuttgart PI-class I Facility-class Science Instrument

- § Completed Pre-Ship Review 29-Oct-2013
- § FIFI-LS has been shipped to DAOF; team arrives November 25 to begin setup in the lab at DAOF
- § FIFI-LS scheduled to install on aircraft 25-Feb-2014
- § Commissioning flights planned in early March and late April 2014

FIFI-LS Performance

FIFI-LS

Description	Dual-channel integral field imaging spectrometer			
Wavelength Range	42-125 μm	105-210 <i>µ</i> m		
Detector	Ge:Ga Stressed Ge:G			
Array Format	16×25			
Pixel Scale	6″	12″		
FOV	30″×30″	60″×60″		

