

Data Processing Status

R. Y. Shuping, *Data Processing Development Lead* SSI/USRA-SOFIA

W. Vacca, Data Processing Science Lead USRA-SOFIA

SOFIA Users Group

Nov 18, 2013

SOFIA Data Products

Defined in the Data Processing Plan for SOFIA SIs :

- Level 1: raw SI data in standardized format (FITS)
- Level 2: corrected for instrument artifacts (e.g., flats, darks, bad pixels)
- Level 3: flux calibrated (e.g. BSCALE/BUNIT keywords, MJy/sr)
- Level 4: high-order products possibly combining multiple observations

(e.g. mosaics, spectral cubes)

SOFIA Data Processing Team

- Provide science-grade data products to GIs and science community:
 - process/analyze data
 - quality assurance
- Curate processed data in the archive and re-process as needed.
- Develop pipelines and other needed software tools.
- Support SI teams on pipeline development/ delivery.

Data Processing Flow

- Two modes of Level 2 Processing:
 - Manual: operator runs established version of pipeline interactively in stand-alone environment (workstation) on a single observation.
 - "Automatic": pipeline is run automatically on data for a whole mission.
 Some provision for userinteraction will be made.
- Level 3 Processing will be highly user interactive, utilizing both COTS and custom tools/pipelines.

System Context

Requires access to persistent store

See Shuping et al. (ADASS 2012) for more on the DCS.

SI Pipeline Readiness

SI Pipeline	Status
FORCAST Imaging	Automatic pipeline in operation.
FORCAST Grism	Automatic pipeline in operation.
FLITECAM Imaging	Ready; waiting for additional commissioning data.
FLITECAM Grism	Ready; waiting for additional wave cals.
GREAT	Manual scripts in operation; Level 3 only.
EXES	Preliminary pipeline received; in development
FIFI-LS	Preliminary pipeline received; agreement with SI team to revisit.
HAWC+	Preliminary pipeline for HAWC received; will need additional development for HAWC+.
HIPO	N/A

OC1 Level 2 Pipeline Processing

FORCAST (Imaging/Grism):

- Chop/Nod subtraction
- Non-linear response correction
- Bad-pixel removal
- Droop & "jailbar" (cross-talk) correction
- Optical distortion correction

 (I)
- Field rotation/alignment (I)
- Flatfield correction (G)
- Wavelength calibration (G)

FLITECAM (Imaging/Grism):

- Nod subtraction
- Flatfield correction
- Bad-pixel removal
- Optimal spectral extraction (G)
- Wavelength Calibration (G) (TBD)

Flux Calibration for FORCAST and FLITECAM Imaging

- On each flight, observations of standard stars will be obtained at each altitude (as in Basic Science).
 - See backup slides for standard star selection
- For imaging, fluxes and wavelengths have been derived for each standard star for each filter using a comprehensive model of the instrument throughput and atmospheric transmission
- Corrections for differences in airmass, altitude, and pwv, between targets and standards have been derived from ATRAN models for each passband and incorporated into the calibration software
- Calibration parameters applied to Level 2 data to produce Level 3 products; calibration params also stored in archive for reference.
- All standards obtained in-flight are used for calibration.

OC1 Processing Status

		L1	L1		L2	L2	L2	L2		L3	L3	L3	L3	
Series Flight	Date	ODC	DCS		Proc	QA	DCS	GI		Proc	QA	DCS	GI	
OC1B 108im	6/22/17							8/20	9/27				9/17	9/27
OC1B 108gr	6/22/17							8/21	9/27					
OC1B 109im	6/27/17							8/17	9/27				9/17	9/27
OC1B 109gr	6/27/17							8/21	9/27					
OC1B 110	7/3/17							8/17	9/27				9/17	9/27
OC1C 115	7/18/17		7/19											
OC1C 116	7/19/17		7/20											
OC1C 117	7/20/17		7/21											
OC1C 118	7/23/17		7/23											
OC1C 119	7/24/17		7/25											
OC1C 120	7/25/17		7/26											
OC1C 121	7/29/17		7/30											
OC1C 122	7/30/17		7/31											
OC1C 123	7/31/17		8/1											
OC1D 128	9/11/17		9/12	10/19	11	./15								
OC1D 129	9/13/17		9/13	10/22	11	./16								
OC1D 130	9/14/17		9/18	10/22										
OC1D 131	9/18/17		9/20	10/23										
OC1D 132	9/20/17		9/20	10/23										
OC1E 135	10/26/17		10/29	11/1										
0011 155	10/20/17		10/29	11/1										
General Issues:														
 Verification/undate of raw EITS headers is time 														

- consuming.
- QA also time consuming.
- Govt shutdown caused >2-week delay in reqd SW updates.
- Unscheduled update to DPS production environment.

Complete

In Work; some issues.

Cannot Complete

In Work

OC1B Results

Processed GI 34 AORs (5 grism, 29 imaging; 9 GI programs)

- All flights auto-pipelined successfully*: <20min per flight.
- Auto-pipelines generally produced good results; but there were some failures (particularly for grisms).
- Many datasets re-processed to improve quality:
 - $\circ~$ Nearly all grism observations
 - $\,\circ\,$ 30 50% of imaging observations
- **QA**: 7 AORs had generally poor results, despite re-processing.

Flux Calibration: (Imaging):

- Standards: alpha Boo, beta And, beta Peg, beta UMi
- 7 AORs had missing or bad standards for one filter
- Reproducibility is good (but limited dataset...)
 - Dispersion of cal factors *within* flight: <10%
 - Dispersion of cal factors *across* flights: <5%.
- * Once raw FITS headers were corrected.

OC1B Processed Data Issues

General Issues:

- FITS header errors that require fixing before processing and rely on handwritten logs for correction.
- FORCAST Grism: no telluric correction or flux calibration.
 - Will correct/calibrate once process is established.
- Accuracy of WCS is poor:
 - Incorrect coordinates used occasionally when updating TA pointing.
 - Issue with WCS keywords in raw data (chopper offset)
 - Error in FORCAST pipeline (v1.0.2): *now corrected*.

Isolated Issues:

- Chopper smear (short chop settle time); *now corrected*.
- Vignetting
- Some raw images with high backgrounds (wrong frame time); flux cal not attempted.
- Loss of pointing. SOFIA Users Group

Development for OC2

Pipelines:

- FORCAST: Updates to improve integration with automated system; need G3xG4 wave cals.
- FLITECAM: Finalize using commissioning results (Early 2014).
- FIFI-LS: Develop/test alpha for commissioning (Early 2014)
- EXES: Develop/test alpha for commissioning (Late 2014)

Infrastructure upgrades:

- Adding dedicated test environment

New capabilities:

- Metadata/reporting subsystem
- Re-processing tools

SPR maintenance/upgrades: on-going.

Backup Slides

Completed Reviews

DPS Requirements Review (Oct 15, 2012)

- 73 RFI/RFAs Captured
- Revised DPS Specs, ICD, and Pipeline Acceptance Plan approved by PCB on Feb 12, 2013.

DPS Preliminary Architectural Design Review (Dec 13, 2012)

- Introduction to architecture presented; overall approach validated by review team.
- 9 RFIs/RFAs Captured

SI Pipeline Requirements Review (Mar 11, 2013)

- SI Pipeline requirements (SW01) and DRAFT Users and Developers Manuals validated.
- 16 RFIs/RFAs Captured
- SI Pipeline Requirements (SW01s) approved by PCB (Apr 23, 2013).

DPS Critical Architectural Design Review (Apr 15, 2013)

- Architectural design and V&V plans validated, pending resolution of RFIs/ RFAs
- 22 RFIs/RFAs captured

OC1B Test Readiness Review (Jul 1, 2013)

- All software baselined; test procedures/data validated.
- 2 RFIs/RFAs captured

Standard Star Selection

- For FORCAST, standard stars chosen from list of Herschel standards for which good models covering the FORCAST bandpass are available:
 - α Boo, α Cet, α CMa, α Tau, β And, β Peg, β UMi, γ Dra, σ Lib
 - Asteroids could also be used if accurate models are available (especially important for calibrating filter "blue leaks")
- For FLITECAM, imaging standard stars chosen from Cohen et al. (2003) list of "Supertemplate" stars (~22 K-M giants with K ~ 5-8); grism standards are A0V's, as used for ground-based NIR spectroscopy

USRA

Hardware/Network

