

The SOFIA Water Vapor Monitor

Thomas Roellig

Agenda

OFIA Stratospheric Observatory for Infrared Astronomy

- Introduction to the WVM
- Current status of the WVM
- WVM Calibration
- Atmospheric Model Issues

WVM Overview

- The SOFIA Water Vapor Monitor (WVM) measures the water vapor overburden above the SOFIA aircraft in flight by measuring the shape of the 183.3 GHz atmospheric water emission line.
 - Baseline performance requirement: The Water Vapor Monitor subsystem shall provide a readout of microns of precipitable water vapor in the <u>TA line of sight</u>, with an accuracy of ±2 microns (3-sigma) for each independent measurement. This requirement shall only apply when the integrated water vapor level to the zenith is between 4 and 20 microns (corresponding to flight altitudes of 35,500 to 46,000 feet in the US Standard Atmosphere).
 - WVM takes and records data in flight every 15 seconds

The 183.3 GHz Water Line

Frequency (GHz)

SOFIA Users Group – 11/18/13

Tb (K)

WVM Sub-System Block Diagram

JFLA Stratospheric Observatory for Infrared Astronomy

SOFIA Users Group - 11/18/13

WVM Subsystem Installed Hardware

SOFIA Users Group – 11/18/13

Current WVM Status

- WVM hardware was installed in aircraft for Early Science and has been operational - at least up until Flight 100 (4/13)
 - Malfunctioned after MCCS reboots during that flight
 - Should note that this hardware was used for qualification testing and underwent severe shake-andbakes
- Two built-to-print flight sets of hardware have been developed, the first is ready to be installed in the aircraft
 - Delivered to the DAOF
 - Ruggedized in the DFRC labs

- Passed its post-ruggedization functional testing

Current WVM Status - 2

- Clearly detected the 183 GHz water line, saw line strength go down as aircraft gained altitude as expected
- Saw changes in line strength due to aircraft banking, stratospheric "weather"

National Aeronautics and Space

Measured Sky Brightness During Climb and Banking

)FIA Stratospheric Observatory for Infrared Astronomy

Example Measured Water Vapor National Aeronautics and Space in Flight

Administration

SOFIA Users Group – 11/18/13

- WVM flight data is/will be calibrated by three methods
 - Comparison with GEOS-V satellite date
 - Comparison with balloon radiosonde date
 - Cross comparison with SOFIA Science Instruments
 - Spectrographic instruments
 - GREAT, FliteCAM grism, FORCAST grism
- Much data already taken, but has been taken with the qualification unit hardware
- Is still TBD how much the calibration differs between the different hardware

FORCAST Grisms

JFLA Stratospheric Observatory for Infrared Astronomy

SOFIA

- What is truth?
 - Radiosonde instrument payloads measure dew point, but technology doesn't work particularly well above the tropopause
 - Other truth data falls into two camps, with a difference of a factor of two-three between them
- Can calibrate empirically by comparing WVM readings with measurements of standard objects
 - Needs to be done separately for each instrument and each filter
 - Very time consuming, but good data will be built up over time

OFIA Stratospheric Observatory for Infrared Astronomy

Blue dashed curve is fit to the collection of past measurements:

- Mastenbrook (1968): 10-yr. balloon campaign, mixing ratios integrated upward (EFE98)
- Nolt (1979): zenith interferometer, 30K 45K, H_2O sub-mm emission lines
- KAO CGS: FIR telluric absorption line profiles, ATRAN fits, U.S. and NZ flights, 37K – 45K
- J. Horn (1992); M. Haas (2006): Microwave Limb Sounder (MLS) synoptic soundings from orbit (Sun at Earth limb)

Much higher curves (orange, red dots) are from SOFIA FPE output for summer & winter, a factor of 2 to 3 greater (for any season and all altitudes of interest) than the envelope of published data from four different methods.

- **OFLA** Stratospheric Observatory for Infrared Astronomy
- Even once the water vapor is known, the atmospheric models do a very poor job of predicting the effects on the SOFIA instruments
- May need to adopt the slow painful empirical technique after all

National Aeronautics and Space Administration

Different Model Predictions

GREAT – L1 and L2 Channels

 $Pwv = 12.3 \ \mu m$ for $Pwv = 35 \mu m$ for

L1

L2

SOFIA Users Group - 11/18/13