High-Mass Star Formation

Jonathan C. Tan

(University of Florida)

The Physics of High-Mass Star Formation

A complicated, nonlinear process:

- Gravity vs pressure (thermal, magnetic, turbulence, radiation, cosmic rays) and shear.
- Heating and cooling, generation and decay of turbulence, generation (dynamo) and diffusion of B-fields.
- Chemical evolution of dust and gas.
- Fragmentation
- Stellar structure and evolution
- Feedback
- Wide range of scales (~ 12 dex in space, time) and multidimensional.
- Uncertain/unconstrained initial conditions/boundary conditions.

Notation for gas structures: Core -> star or close binary Clump -> star cluster

(Massive) Star Formation: Open Questions

- Causation: external triggering or spontaneous gravitational instability?
- Initial conditions: how close to equilibrium?
- Accretion mechanism: [turbulent/magnetic/thermal-pressure]-regulated fragmentation to form cores vs competitive accretion / mergers
- Timescale: fast or slow (\# of dynamical times)?
- End result
- Initial mass function (IMF)
-Binary fraction and properties

m^{*}

How do these properties vary with environment? Subgrid model of SF? Threshold $\mathbf{n}_{H^{*}}$? Efficiency $\varepsilon_{\boldsymbol{f}}$?

Outline

- Environments of Massive Star Formation
- Initial Conditions
- Timescales and Infall Rates
- Protostars - Accretion \& Outflow
- Feedback
- Dynamical Interactions

Massive Star Formation Theories

Core Accretion:

wide range of $\mathrm{dm} * / \mathrm{dt} \sim 10^{-5}-10^{-2} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
(e.g. Myers \& Fuller 1992; Caselli \& Myers 1995; McLaughlin \& Pudritz 1997; Osorio+ 1999; Nakano+ 2000; Behrend \& Maeder 2001)

Turbulent Core Model:

(McKee \& Tan 2002, 2003)
Stars form from "cores" that fragment from the "clump"

$$
\bar{P}=\phi_{P} G \Sigma^{2}
$$

If in equilibrium, then self-gravity is balanced by internal pressure: B-field, turbulence, radiation pressure (thermal P is small)

Cores form from this turbulent/magnetized medium: at any instant there is a small mass fraction in cores. These cores collapse quickly to feed a central disk to form individual stars or binaries.

$$
\dot{m}_{*} \sim M_{\text {core }} / t_{\mathrm{ff}}
$$

Competitive (Clump-fed) Accretion:
(Bonnell, Clarke, Bate, Pringle 2001;
Bonnell, Vine, \& Bate 2004;
Schmeja \& Klessen 2004;
Wang, Li, Abel, Nakamura 2010; ...)
Stars, especially massive stars, gain most mass by Bondi-Hoyle accretion of ambient clump gas

Originally based on simulations including only thermal pressure.

Massive stars form on the timescale of the star cluster, with relatively low accretion rates.

Massive Star Formation Theories

Core Accretion:

wide range of $\mathrm{dm} * / \mathrm{dt} \sim 10^{-5}-10^{-2} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
(e.g. Myers \& Fuller 1992; Caselli \& Myers 1995; McLaughlin \& Pudritz 1997; Osorio+ 1999; Nakano+ 2000; Behrend \& Maeder 2001)

Turbulent Core Model:

(McKee \& Tan 2002, 2003)
Stars form from "cores" that fragment from the "clump"

$$
\bar{P}=\phi_{P} G \Sigma^{2}
$$

If in equilibrium, then self-gravity is balanced by internal pressure: B-field, turbulence, radiation pressure (thermal P is small)

${ }_{\text {t }}$ SOFIA Result on Clump Infall $\mathbf{V}_{\text {infall }} \boldsymbol{\sim} \mathbf{0 . 1} \mathbf{v f f}^{\text {ff }}$ (Wyrowski et al. 2016)

Competitive (Clump-fed) Accretion:
(Bonnell, Clarke, Bate, Pringle 2001;
Bonnell, Vine, \& Bate 2004;
Schmeja \& Klessen 2004;
Wang, Li, Abel, Nakamura 2010; ...)
Stars, especially massive stars, gain most mass by Bondi-Hoyle accretion of ambient clump gas

Violent interactions? Mergers? (Bally \& Zinnecker 2005)

1t. Orion KL

Schematic Differences Between Massive Star Formation Theories

The Initial Conditions of Massive Star Formation

Do massive starless cores exist?

 Are they close to virial equilibrium?$$
\begin{aligned}
R_{\mathrm{c}, \text { vir }} & \rightarrow 0.0574\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 2}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{-1 / 2} \mathrm{pc} \\
\sigma_{\mathrm{c}, \text { vir }} & \rightarrow 1.09\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 4}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1}
\end{aligned}
$$

McKee \& Tan (2003)

Mid-IR Extinction Mapping of Infrared Dark Clouds

(Butler \& Tan 2009, 2012; see also Peretto \& Fuller 2009; Ragan et al. 2009; Battersby et al. 2010)
G28.37+00.07

Mid-IR Extinction Mapping of Infrared Dark Clouds

(Butler \& Tan 2009, 2012; see also Peretto \& Fuller 2009; Ragan et al. 2009; Battersby et al. 2010) G28.37+00.07

Spitzer IRAC 8um (GLIMPSE)

Median filter for background around IRDC; interpolate for region behind the IRDC
Correct for foreground
~Arcsecond scale maps of regions up to $\Sigma \sim 0.5 \mathrm{~g} \mathrm{~cm}^{-2}$; independent of dust temp.

Distance from molecular line velocities -> M(Σ)

IRDC Studies

Butler \& Tan (2009; 2012) - MIREX maps

$\boldsymbol{\Sigma}$ - M Diagram

Physical Properties of Star-Forming Regions
$\Sigma \equiv \frac{M}{\pi R^{2}}$
$\bar{P} \simeq G \Sigma^{2}$
$\bar{P} / k=4.3 \times 10^{8} \Sigma^{2} \mathrm{Kcm}^{-3}$ $t_{f f}=\left(\frac{3 \pi}{32 G \rho}\right)^{1 / 2}$

$$
A_{V}=7.5
$$

$$
\mathrm{A}_{8 \mu \mathrm{~m}}=0.30
$$

$$
\begin{array}{ll}
\odot & N_{H}=1.6 \times 10^{22} \mathrm{~cm}^{-2} \\
\curvearrowleft & \Sigma=180 \mathrm{M}_{\odot} \mathrm{pc}^{-2} \\
\longleftarrow & \mathrm{~A}_{\mathrm{V}}=1.4 \\
& \mathrm{~N}_{\mathrm{H}}=3.0 \times 10^{21} \mathrm{~cm}^{-2}
\end{array}
$$

$$
\Sigma=34 \mathrm{M}_{\odot} \mathrm{pc}^{-2}
$$

Tan et al. (2014, PPVI)
$\mathrm{M}\left(\mathrm{M}_{\odot}\right)$
Local Galactic Disk
$\Sigma \sim 10 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$

SOFIA Capabilities

Formation of IRDCs, GMC Collisions, Dense Gas Mass Fractions \& KS Relation

Sample of ~ 50 massive "starless" core/clumps

(Butler \& Tan 2012; Butler et al. 2014)
Mass surface densities $\left(\mathrm{M}=60 \mathrm{M}_{\odot}\right)$

$$
\bar{\Sigma} \simeq 0.1-0.4 \mathrm{~g} \mathrm{~cm}^{-2}
$$

Cores show central concentration

$$
\rho \propto r^{-k_{\rho}} \quad k_{\rho}=1.5 \pm 0.3
$$

Contain many Jeans masses.
B-fields suppress fragmentation?
Not radiative heating (c.f., Krumholz \& McKee 2008).

$$
M_{\mathrm{BE}}=1.182 \frac{c_{\mathrm{th}}^{4}}{\left(G^{3} P_{s, \text { core }}\right)^{1 / 2}} \rightarrow 0.0504\left(\frac{T}{20 \mathrm{~K}}\right)^{2} \frac{1}{\Sigma_{\mathrm{cl}}} M_{\odot}
$$

Magnetic Critical Mass (Bertoldi \& McKee 1992)

$$
\begin{aligned}
& M_{B}=79 c_{\Phi}^{3}\left(\frac{R}{Z}\right)^{2} \frac{\bar{v}_{A}^{3}}{\left(G^{3} \bar{\rho}\right)^{1 / 2}}=1020\left(\frac{R}{Z}\right)^{2}\left(\frac{\bar{B}}{30 \mu \mathrm{G}}\right)^{3}\left(\frac{10^{3} \mathrm{~cm}^{-3}}{\bar{n}_{\mathrm{H}}}\right)^{2} M_{\odot} \\
& \mathbf{n}_{\mathbf{H}} \sim 1 \mathbf{0}^{5} \mathbf{c m}^{-3}, \mathbf{B} \sim \mathbf{2 0 0} \mathbf{G} \mathbf{G} \boldsymbol{- >} \mathbf{M B}_{\mathbf{B}} \sim \mathbf{1 0 0} \mathbf{M}_{\odot}
\end{aligned}
$$

Four IRDC core/clumps selected to be dark at $8,24,70 \mu \mathrm{~m}$

So use high angular resolution observations of $\mathrm{N}_{2} \mathrm{D}^{+}(3-2)$ to 1. Identify exact location of (massive) starless cores
2. Measure core velocity dispersion, σ.
3. Measure $\mathrm{D}_{\mathrm{frac}}$?
4. Astrochemical ages?

Comparison to Turbulent Core Model

$0.1 \quad 0.2$
$0.30 .{ }^{\text {g.cm-2 }}$
0.6
0.7
0.8

C1, $\Sigma_{\text {mirex, }} \mathrm{N}_{2} \mathrm{D}^{+}(3-2)$ contours

$$
\phi_{B} \equiv \frac{\left\langle c^{2}\right\rangle}{\left\langle\sigma^{2}\right\rangle}=1+\frac{3}{2} \frac{E_{B}}{E_{K}}+\frac{E_{\delta B}}{2 E_{K}}=1.3+\frac{3}{2 m_{\mathrm{A}}^{2}}
$$

$$
\sigma_{\mathrm{c}, \mathrm{vir}} \rightarrow 1.09\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 4}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1} 0^{0.067}
$$

Core masses inside 3σ $\mathrm{N}_{2} \mathrm{D}^{+}$contour:

$$
\Sigma_{\mathrm{cl}}=0.36 \mathrm{~g} \mathrm{~cm}^{-2}
$$

$\mathrm{M}_{\mathrm{c}, \text { MIREX }}=55.2 \pm 25 \mathrm{M}_{\odot}$ $\mathrm{M}_{\mathrm{c}, \mathrm{mm}}=62.5{ }^{129}{ }_{26.9} \mathrm{M}_{\odot}$

Predictions from Virial Equilibrium

-1D velocity dispersion if virialized:
($m_{A}=\sqrt{3} \sigma_{c} / v_{A}=1$)

$$
\sigma_{\mathrm{c}, \mathrm{vir}} \rightarrow 1.09\left(\frac{M_{c}}{60 M_{\odot}}\right)^{1 / 4}\left(\frac{\Sigma_{\mathrm{cl}}}{1 \mathrm{~g} \mathrm{~cm}^{-2}}\right)^{1 / 4} \mathrm{~km} \mathrm{~s}^{-1}
$$

Core	$\mathrm{C} 1-\mathrm{N}$	$\mathrm{C} 1-\mathrm{S}$	F 1	F 2	$\mathrm{G} 2-\mathrm{N}$	$\mathrm{G} 2-\mathrm{S}$
$\Sigma_{\mathrm{cl}}\left(\mathrm{g} \mathrm{cm}^{-2}\right)$	0.48	0.40	0.22	0.32	0.21	0.19
$\mathrm{M}_{\mathrm{c}}\left(\mathrm{M}_{\odot}\right)$	16	63	6.5	4.7	2.4	0.83
$\sigma_{\text {vir }}(\mathrm{km} / \mathrm{s})$	0.66 ± 0.22	0.88 ± 0.30	0.43 ± 0.15	0.44 ± 0.15	0.33 ± 0.11	0.25 ± 0.09
$\sigma_{\text {obs }}(\mathrm{km} / \mathrm{s})$	0.41 ± 0.03	0.41 ± 0.02	0.25 ± 0.02	0.42 ± 0.04	0.34 ± 0.02	0.30 ± 0.02

Tentative Conclusion: Cores appear to be near virial equilibrium, after accounting for clump envelope. Possibly slightly sub-virial; or have stronger B-fields (see also - Kauffmann, Pillai \& Goldsmith 2013).

A Hunt for Massive Starless Cores

Kong, Tan et al. (2016b, arXiv:1609.06008)

- Snapshot ALMA survey of 32 IRDC clumps
- Automated $\mathrm{N}_{2} \mathrm{D}^{+}(3-2)$ core finding
- ~100 $\mathrm{N}_{2} \mathrm{D}^{+}(3-2)$ core candidates detected
- Dynamical analysis of 6 best cores: < $\sigma_{\text {obs }} / \sigma_{\text {vir }}>=0.80 \pm 0.06$

But are the "Cores" Starless? sometimes not!

ALMA Cycle 2 follow-up of C1 region

(b) color:1.3mm continuum; contour: $\mathrm{CO}(2-1)$

Tan, Kong et al. (2016)

The Deuteration Fraction of C1-S \& C1-N

Kong, Tan, Caselli, Fontani, Pillai, Butler, Shimajiri, Nakamura, Sakai (2016)

- Multi-transition study of $\mathrm{N}_{2} \mathrm{D}^{+}$\& $\mathrm{N}_{2} \mathrm{H}^{+}$

Results:
$\mathrm{T}_{\text {ex }}\left(\mathrm{N}_{2} \mathrm{D}^{+}\right) \sim 4 \mathrm{~K}-7 \mathrm{~K}$
$\mathrm{D}_{\text {frac }} \equiv\left[\mathrm{N}_{2} \mathrm{D}^{+}\right] /\left[\mathrm{N}_{2} \mathrm{H}^{+}\right]=0.15-0.72$ (C1-S)

$$
=0.16-0.44(C 1-N)
$$

Most efficient method would be ALMA observations of $\mathrm{N}_{2} \mathrm{D}^{+}(3-2)$ and $\mathrm{N}_{2} \mathrm{H}^{+}(3-2)$

The Deuteration Clock

Kong, Caselli, Tan, Wakelam, Sipilä (2015) (see also Pagani et al. 2009, 2013)

- Modeling of $\mathrm{N}_{2} \mathrm{H}^{+}$deuteration with gas-phase, spin-state network (132 species; 3232 reactions) to constrain age or collapse rate

Parameter	Description	Fiducial value
n_{H}	number density of H nuclei	$1.0 \times 10^{5} \mathrm{~cm}^{-3}$
T	temperature	15 K
ζ	cosmic-ray ionization rate	$2.5 \times 10^{-17} \mathrm{~s}^{-1}$
f_{D}	depletion factor	10
G_{0}	ratio to Habing field	1
A_{V}	visual extinction	30 mag
$O P R^{H 2}$	ortho to para ratio of H_{2}	$10^{-3}-3$
e.g. Hernandez et. al (2011)		
$\mathrm{H}_{3}{ }^{+}+\mathrm{CO} \rightarrow \mathrm{HCO}^{+}+\mathrm{H}_{2}$		
$\left(\mathrm{~T}<20-30 \mathrm{~K}\right.$ for small $\left.\mathrm{OPR}^{\mathrm{H} 2}\right)$		
$\mathrm{H}_{3}{ }^{+}+\mathrm{HD} \rightarrow \mathrm{H}_{2} \mathrm{D}^{+}+\mathrm{H}_{2}$		
$\mathrm{H}_{2} \mathrm{D}^{+}+\mathrm{N}_{2} \rightarrow \mathrm{H}_{2}+\mathrm{N}_{2} \mathrm{D}^{+}$		

Parameter Space Exploration: $\mathbf{n}_{\mathrm{H}}, \mathbf{T}, \zeta, \mathrm{f}_{\mathrm{D}}$, OPR $^{\mathbf{H}}{ }^{2}$ Deuteration time; comparison with $\mathrm{t}_{\mathrm{ff}} \& \mathrm{t}_{\mathrm{ad}}$

The Deuteration Clock

Kong, Caselli, Tan, Wakelam, Sipilä (2015)

- Evolving density model

$$
\frac{\mathrm{d} n_{\mathrm{H}}}{\mathrm{~d} t}=\alpha_{\mathrm{ff}} \frac{n_{\mathrm{H}}(t)}{t_{\mathrm{ff}}(t)}
$$

If $n_{0} \geq 0.1 n_{1}$
If initial $O P R^{H 2} \geq 1$
initial $f_{D}=1$
THEN $D_{\text {frac }} \geq 0.1 \Rightarrow \alpha_{\mathrm{ff}} \leq 0.1$

But, observed values of $D_{\text {frac }}$ consistent with predicted equilibrium values

$$
\mathrm{D}_{\text {frac }} \equiv\left[\mathrm{N}_{2} \mathrm{D}^{+}\right] /\left[\mathrm{N}_{2} \mathrm{H}^{+}\right]=0.15-0.72(\mathrm{C} 1-\mathrm{S})
$$

$$
=0.16-0.44(\mathrm{C} 1-\mathrm{N})
$$

Observed
$D_{\text {frac }}$ of C1-S (Kong+ 2016)

Magnetized, Turbulent, Massive Starless Core Simulations

Goodson, Kong, Tan et al. (2016, arXiv:1609.07107)

- ATHENA: ideal MHD; isothermal (15K; $\gamma=1.01$)
- Parameterized D chemistry (Kong et al. 2015): $\mathrm{d}\left[\mathrm{N}_{2} \mathrm{D}^{+}\right] / \mathrm{dt}\left(\mathrm{n}_{H}\right) ; \mathrm{d}\left[\mathrm{N}_{2} \mathrm{H}^{+}\right] / \mathrm{dt}\left(\mathrm{n}_{H}\right)$

C1-S: $M_{c}=60 M_{\odot} ; r=0.07 \mathrm{pc} ; \Sigma_{\mathrm{cl}}=0.5 \mathrm{~g} \mathrm{~cm}^{-2} ; \mathrm{n}_{\mathrm{H}}=6 \times 10^{5} \mathrm{~cm}^{-3} ; \mathrm{t}_{\mathrm{ff}}=40 \mathrm{kyr} ; \mathrm{B}_{0} \sim 2.5 \mathrm{mG} ; \mathrm{B}_{\mathrm{s}} \sim 0.5 \mathrm{mG}$
$t=0.00 t_{\text {tf }} \quad O P R_{\text {init }}=0.10$

$\log _{10}\left[\Sigma /\left(\mathrm{g} \mathrm{cm}^{-2}\right)\right]$

-2.0	-0.5	1.0

$\frac{\log _{10}\left[D_{\text {trac }}\right]}{$| -3.0 | -2.5 | -2.0 |
| :--- | :--- | :--- |}

$\frac{\log _{10}\left[D_{\text {trac }}\right]}{$| -2.0 | -1.5 | -1.0 |
| :--- | :--- | :--- |}

Magnetized, Turbulent, Massive Starless Core Simulations

Goodson et al. 2016 - Simulated Dirac maps

Chemical Clock with para- $\mathrm{H}_{2} \mathrm{D}^{+}$

ortho \& para $\mathrm{H}_{2} \mathrm{D}^{+}$to constrain ortho to para ratio of H_{2} (Brünken et al. 2014)

Protostellar core IRAS 16293-2422 A/B ($\mathrm{n}_{\mathrm{H}} \sim 2 \times 10^{5} \mathrm{~cm}^{-3}, \mathrm{t}_{\mathrm{ff}}=1.0 \times 10^{5} \mathrm{yr}$) OPR $_{H 2} \sim 10^{-4}$, which indicates chemical processing for $>1 \mathrm{Myr}=10 \mathrm{t}_{\mathrm{ff}}$

This information helps break degeneracies in Deuteration chemical clocks $\left[\mathrm{N}_{2} \mathrm{D}^{+}\right] /\left[\mathrm{N}_{2} \mathrm{H}^{+}\right]$
(Pagani et al. 2011, 2013; Kong et al. 2015)

Constraints for Initial Conditions of Numerical Simulations

Peters et al. (2011)
$M=100 M_{\odot}, R=0.5 p c$,
$\mathrm{n}_{\mathrm{H}}=5400 \mathrm{~cm}^{-3}, \mathrm{~B}=10 \mu \mathrm{G}$

Seifried et al. (2012)
$M=100 M_{\odot}, R=0.25 p c$,
$\mathrm{n}_{\mathrm{H}}=4.4 \times 10^{4} \mathrm{~cm}^{-3}, \mathrm{~B} \sim 1 \mathrm{mG}$

Myers et al. (2013)
$\mathrm{M}=300 \mathrm{M}_{\odot}, \mathrm{R}=0.1 \mathrm{pc}$, $\mathrm{n}_{\mathrm{H}}=2.4 \times 10^{6} \mathrm{~cm}^{-3}, \mathrm{~B}>\sim 1 \mathrm{mG}$

Do massive protostars have morphologies similar to low-mass protostars?
 What sets the star formation efficiency from the core? CMF -> IMF?

Protostellar Evolution

Zhang, Tan, Hosokawa (2014)

see also Palla \& Stahler 1993; Hosokawa et al. (2010)

Diagnostics of the Turbulent Core Model

Zhang \& Tan (2011), Zhang, Tan \& McKee (2013), Zhang, Tan \& Hosokawa (2014), Tanaka, Tan \& Zhang (2016)

Prediction: increasing symmetry from MIR-FIR

Massive Protostar G35.2N: d=2.2kpc; L~105 L 。

FORCAST 31 micron
FORCAST 37 micron

0.01

$$
\begin{gathered}
0.10 \\
\mathrm{~S} / \mathrm{S}_{\max }
\end{gathered}
$$

1.00
$0.0001 \quad 0.0010$
0.0100
$\mathrm{~S} / \mathrm{S}_{\text {max }}$
0.1000
1.00

Zhang, Tan, De Buizer et al. (2013)

Spectral energy distribution

MIR SED requires high Σ core/clump

Flux profiles along outflow cavity axis

$\mathrm{L}_{\text {bol }} \sim(0.66-2.2) \times 10^{5} \mathrm{~L}$ 。
$\mathrm{M}_{\text {core }} \sim 240 \mathrm{M}$ 。
$\Sigma_{\mathrm{Cl}} \sim 0.4-1 \mathrm{~g} / \mathrm{cm}^{2}$
$\theta_{w} \sim 35-51^{\circ}$
$\theta_{\text {view }} \sim 43-58^{\circ}$
m^{*} ~20-34 M.

Simple, symmetric model provides good fit to SED \& image intensity profiles: detailed constraints on how a massive star is forming.

The SOFIA Massive (SOMA) Star Formation Survey

Jonathan C. Tan, James M. De Buizer, Mengyao Liu, Yichen Zhang, Jan E. Staff, Maria T. Beltrán, Ralph Shuping, Barbara Whitney

See poster: Mengyao Liu et al.

THE SOFIA MASSIVE (SOMA) STAR FORMATION SURVEY: I. OVERVIEW AND FIRST RESULTS

The SOMA Survey

 SOFIA-FORCAST observations of assimplex massive \& Antermediate-mass proistarsType I: MIR sources in IRDCs - relatively isolated sources in Infrared Dark Clouds, some without detected radio Type II: Hyper-compact - often jet-like, radio sources, where the MIR emission extends beyond the observed radio emission (e.g., G35.2) Type III: Ultra-compact - radio sources where the radio emission is more extended than the MIR emission
Type IV: Clustered sources - a MIR source exhibiting radio emission is surrounded by several other MIR sources within ~60"

Also extended to Intermediate-Mass protostars.

The SOMA Survey

 20 protostars observed as of Oct 2016 (end of Cycle 4).

Cepheus A

74									CepA \quad NGC7538	
Zhang \& Tan models										
Source	χ^{2} / N	$\begin{gathered} M_{\mathrm{c}} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{gathered} \Sigma_{\mathrm{cl}} \\ \left(\mathrm{~g} \mathrm{~cm}^{-2}\right. \end{gathered}$	$\begin{gathered} m_{*} \\ \left(M_{\odot}\right) \end{gathered}$	$\begin{aligned} & \theta_{\text {view }} \\ & (\mathrm{deg}) \end{aligned}$	$\begin{gathered} A_{V} \\ (\mathrm{mag}) \end{gathered}$	$\begin{aligned} & M_{\mathrm{env}} \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{gathered} \theta_{w, \mathrm{esc}} \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} \dot{M}_{\mathrm{disk}} \\ \left(M_{\odot} / \mathrm{yr}\right) \end{gathered}$	$\begin{aligned} & L_{\mathrm{bol}} \\ & \left(L_{\odot}\right) \end{aligned}$
G35.20-0.74	4.3	120	3.2	12	29	37.6	99	18	$9.6 \times 10^{-}$	5.4×10^{4}
	8.0	120	1.0	24	48	57.2	68	37	4.9×10^{-4}	1.5×10^{5}
	8.0	120	1.0	12	29	3.5	96	20	4.0×10^{-4}	5.0×10^{4}
	9.8	60	3.2	16	48	81.1	31	32	8.4×10^{-4}	1.2×10^{5}
	10.8	60	3.2	12	48	7.1	38	27	7.6×10^{-4}	5.2×10^{4}
Cep A	4.9	480	0.1	12	83	81.1	458	12	1.0×10^{-4}	2.4×10^{4}
	5.0	480	0.1	16	89	100.0	441	15	1.2×10^{-4}	3.9×10^{4}
	6.9	120	0.3	12	62	61.4	93	24	1.6×10^{-4}	3.7×10^{4}
	7.0	60	3.2	16	68	87.0	31	32	8.4×10^{-4}	1.2×10^{5}
	7.4	120	1.0	24	55	100.0	68	37	4.9×10^{-4}	1.5×10^{5}
NGC 7538 IRS9	0.6	480	0.1	16	22	9.3	441	15	1.2×10^{-4}	3.9×10^{4}
	1.2	240	0.1	24	44	37.6	171	33	1.1×10^{-4}	8.3×10^{4}
	1.4	240	0.1	32	48	65.8	140	42	1.1×10^{-4}	1.5×10^{5}
	1.7	60	3.2	12	34	14.2	38	27	7.6×10^{-4}	5.2×10^{4}
	2.3	60	3.2	16	39	61.4	31	32	8.4×10^{-4}	1.2×10^{5}

Feedback During Massive Star Formation

Is there a maximum stellar mass set by by formation processes?

m*
Feedback processes:

1. Protostellar outflows
2. Ionization
3. Stellar winds
4. Radiation pressure
5. Supernovae

But Crowther et al. (2010) claim most massive star to form was initially ~300M ${ }_{\text {, }}$ consistent with statistical sampling of Salpeter IMF with no maximum cutoff mass.

Staff + (2010); Kuiper+ (2015)
Peters et al. 2010, 2011

Krumholz+ (2009); Rosen+ (2016)
Kuiper et al. (2012); Klassen+ (2016)

Accretion processes: Core/disk fragmentation (Kratter \& Matzner 06; Peters et al. 10) Stellar processes: Nuclear burning instabilities/enhanced mass loss
Currently unclear what sets the shape of the massive star IMF

Dynämical Interactions:
 Massive Protostars in Crowded Environments

Orion KL protostar perturbed by a passing runaway star (BN) ejected from the Trapezium star $\theta^{1} C$

Tan (2004)
Chatterjee \& Tan (2012)
Hut \& Bahcall (1983)

Orion KL: a perturbed massive star-forming core

HOWEVER, SEE: Bally \& Zinnecker 2005;
Rodriguez et al. (2005)
Gomez et al. (2005)
Gomez et al. (2008)
Zapata et al. (2009)
Zapata et al. (2011a,b)
Bally et al. (2011)
Goddi et al. (2011)
Moeckel \& Goddi (2011)

BUT, SEE
Plambeck et al. (2016)

Massive Star Formation Theories:

Core Accretion; Competitive Accretion; Protostellar Collisions
Theory: "Iurbulent Core Modef": normalize core surface pressure to surrounding clump pressure, i.e. self-gravitating weight. Core supported by nonthermal pressure (B-fields/turbulence).

1: Massive starless/early-stage cores exist

2: They are near virial equilibrium

3: Massive protostars can have a similar morphology to low-mass protostars, but dynamical interactions can occur (BN/KL)
4. SOFIA is playing a crucial role: IRDC formation, clump infall, astrochemical ages, SEDs and images, and more!

