FLITECAM Imaging Pipeline Tutorial

This tutorial is designed to help guide users through the steps of processing FLITECAM imaging data, from raw data files to the final, calibrated data product. The information in this tutorial can also be found in more detail in the FLITECAM User's Manual.

Retrieve the Data

For this sample reduction, we'll use FLITECAM 3.3 μ m observations of NGC 2023. These data were obtained in 2016 as part of project 04_0058 (PI: Tielens), and are published in <u>Knight et al. (2021)</u>. To retrieve the data from the SOFIA Science Archive at IRSA, enter the following criteria in the main SOFIA search page (<u>https://irsa.ipac.caltech.edu/applications/sofia</u>):

Spatial Constraints \rightarrow All-Sky

Observation Constraints \rightarrow AOR ID \rightarrow 04_0058_5

Data Product Constraints \rightarrow Select Level 1 only (de-select Level 3 and Level 4) or follow this link:

https://irsa.ipac.caltech.edu/applications/sofia/?api=search&spatialConstraints=allsky&execute=true&processingLevel=LEVEL_ 1&aorId=04_0058_5

On the search results page, click on the FLITECAM tab. On the FLITECAM tab, select all 48 data files, either individually or by selecting the box next to the AOR ID column header.

		rsa) Irsa	DATA SETS	S SEAR	сн Тоо	S HEL								Log
~[\]	3	arch Catalogs	Help									kground	Manitar	
OF	A		Heip				A C	9 (9)		I C & M 🖗 I 💭		-		
repa	re Downloa	ad									; , , , , , , , , , , , , , , , , , , ,			
	AOR													
	AOK .	EXES FIFI-LS	FLITECAM	FORCAST	FPI+	GREAT	HAWC	+	Details	Data	Preview	v	Co	verage
	AUR		FLITECAM		FPI+		HAWC		Details Name char	Data Value char	Preview Type char	Units char	Co Description char	verage
	AOR ID					প 🕎		• ?					Description	-
	•	◀ ◀ 1 ▫	1)) (1 - 48 of 48)	ra (deg) double	9 🖫	8.	• ?	Name char	Value char	Type char		Description	
	AOR ID	i∢ ∢ 1 a Mission ID	1) (1 - 48 of 48 Target Name) NAIF ID		প 🕎	Instrument	• ?	Name char AOR ID	Value char 04_0058_5	Type char char		Description	
- 	AOR ID	i∢ ∢ 1 a Mission ID	1) (1 - 48 of 48 Target Name) NAIF ID		প 🕎	Instrument char	ني ® د ۲	Name char AOR ID Mission ID	Value <i>char</i> 04_0058_5 2016-10-20_FC_F340	Type char char char		Description char	
	AOR ID char	Mission ID char	1 (1 - 48 of 48 Target Name char) NAIF ID	ra (deg) double	dec (deg) double	Instrument char	• ?	Name char AOR ID Mission ID Target Name	Value <i>char</i> 04_0058_5 2016-10-20_FC_F340	Char Char Char Char Char	Units char	Description char	
✓	AOR ID char	Mission ID char 2016-10-20_FC_F340	1 (1 - 48 of 48 Target Name char NGC 2023) NAIF ID	ra (deg) <i>double</i> 85.1642430	dec (deg) double	Linstrument char FLITECAM	с Г П А	Name char AOR ID Mission ID Target Name NAIF ID	Value char 04_0058_5 2016-10-20_FC_F340 NGC 2023	Char char char char char char char	Units char	Description char	

Click on Prepare Download to open a download dialog box, and then select Prepare Download within the dialog box. After a few moments, you will be asked to save a zip file to disk (it is ~106MB in size). Save this file wherever you wish, unzip it, and navigate the subfolders to locate the 48 FLITECAM FITS files. You may either leave these files in the directory or move them to another location of your choice; the folder containing the FITS files will be referred to as the 'input' directory for the remainder of the tutorial.

Download and Install the Pipeline

Instructions on how to download and install the *sofia_redux* pipeline package can be found at <u>https://github.com/SOFIA-USRA/sofia_redux</u>. If you need assistance, you can contact us through GitHub or the SOFIA Helpdesk (<u>sofia_help@sofia.usra.edu</u>).

Start the GUI

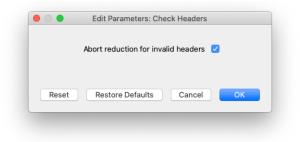
The pipeline can be executed in either Automatic Mode (on the command line) or in Manual Mode (through a GUI). In this tutorial, we will focus on running the pipeline through the GUI. To begin, launch the GUI by opening a terminal and typing:

> redux

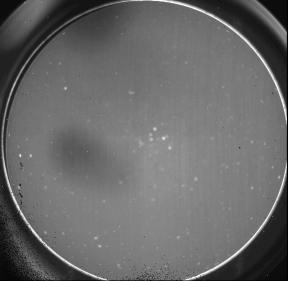
In the Redux GUI, load the NGC 2023 data by selecting File \rightarrow Open New Reduction, navigate to the input directory where you saved the data, select all 48 FITS files by clicking on the first file and shift-clicking on the last file, and then click Open. After clicking Open, the software reads the FITS headers and extracts relevant information, such as the instrument name for determining which pipeline the software will call (note that 'Redux v2.0.0 for FLITECAM in imaging mode' is now displayed above the list of loaded files). Some additional FITS header information is shown on the File Information on the right side of the GUI. You may notice (by scrolling to the right), that file 0439 was taken using a different filter from the others (FLT_K instead of FLT_PAH_329). To exclude this file from processing, go to File \rightarrow Remove files, select Oct_20_2016_0439.a.fits, then click OK.

edux v2.0.0 for FLITECAM in in	naging mode				Data View	File Informatio	n Log		
oaded files:				File Name 🗸	OBJECT	OBSTYPE	AOR_ID	MISSN-ID	
Oct_20_2016_0461.a.fits Oct_20_2016_0462.a.fits			1	Oct_20_2016_0461.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
Oct_20_2016_0441.a.fits Oct_20_2016_0445.a.fits			2	Oct_20_2016_0462.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
Oct_20_2016_0459.a.fits			3	Oct_20_2016_0441.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
Oct_20_2016_0448.a.fits			4	Oct_20_2016_0445.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
Step Undo	Reduce	Reset	5	Oct_20_2016_0459.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
Step through:			6	Oct_20_2016_0460.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
step through:		<u> </u>	7	Oct_20_2016_0439.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
1. Check Headers	Edit	Run	8	Oct_20_2016_0440.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
2. Correct Nonlinearity	Edit	Run	9	Oct_20_2016_0487.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
3. Clip Image	Edit	Run	10	Oct_20_2016_0488.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
4. Make Flat	Edit	Run	11	Oct_20_2016_0489.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
5. Correct Gain	Edit	Run	12	Oct_20_2016_0490.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
			13	Oct_20_2016_0484.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
Subtract Sky	Edit	Run	14	Oct_20_2016_0485.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
7. Register Images	Edit	Run	15	Oct_20_2016_0486.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
8. Telluric Correct	Edit	Run	16	Oct_20_2016_0480.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2
9. Combine Images	Edit	Run	17	Oct_20_2016_0481.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
10. Flux Calibrate	Edit	Run	18	Oct_20_2016_0482.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2
11. Make Image Map	Edit	Run	10	Oct 20 2016 0492 a fite	NGC 2022	OB IECT	04 00E0 E	2018-10-20 EC E240	2

When the pipeline runs, it is possible to automatically display the intermediate data using SAO DS9 if it is set up properly (see http://ds9.si.edu/ for download and installation instructions; the ds9 executable must be available in the PATH environment variable for the pyds9 interface to be able to find and control it). Alternatively, the automatic display can be disabled (each pipeline module can optionally produce FITS file output in case a different FITS viewer is preferred). Options for displaying images in DS9 are found under Display Settings on the Data View tab.


	v2.0.0 for FLITECAM in ima	ging mode			Data View File Information Log
Oct Oct Oct Oct	td files: 20,2016,0461.a.fits 20,2016,0462.a.fits 20,2016,0441.a.fits 20,2016,0445.a.fits 20,2016,0459.a.fits			QAD Tools	Header View Save Current Settings
Öct,	20_2016_0448.a.fits			Status:	
	tep Undo	Reduce		Display Settings	
	through:			Disable DS9	Disable Overplots
Nep	through:			Extension to display	First
1.	Check Headers	Edit	Run	Lock frames to	wcs
2.	Correct Nonlinearity	Edit	Run		
з.	Clip Image	Edit	Run	Lock slice to	Image 🖸
4.	Make Flat	Edit	Run	Scale	ZScale
6.	Correct Gain	Edit	Run	Color map	none
				Zoom to fit	2
	Subtract Sky	Edit	Run	Tile images	
6.	Register Images	Edit	Run	S/N range	
			Run	Reset Displa	ay Settings Restore Default Display Settings
7.	Telluric Correct	Edit	Run		
7. 8.		Edit	Run		
6. 7. 8. 9.	Telluric Correct	(Photometry Setting	

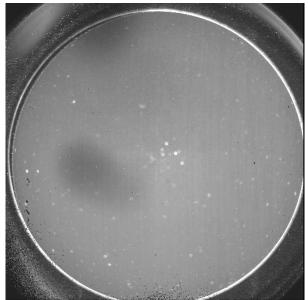
Run the Pipeline


There are 11 modules in the FLITECAM imaging pipeline, shown in the bottom-left panel of the GUI. Each pipeline module can be configured by clicking the 'Edit' button for that module. The entire pipeline can be executed by clicking the 'Reduce' button. Alternatively, the modules can be run individually by clicking on the 'Run' button for that module, or in a small group by selecting an end point in the 'Step Through' dropdown menu, then clicking 'Step.' In this tutorial, we'll run the modules one by one and examine their output.

1. Check Headers: This module examines the fits headers to make sure that they have the keywords required by the pipeline.

Options: Click on the Edit button next to Check Header module. A popup window for Edit Parameters for Check Headers will open up. In the popup window if the 'Abort reduction for invalid headers' option is not selected, the pipeline may fail in unexpected ways (as always: garbage in, garbage out!).

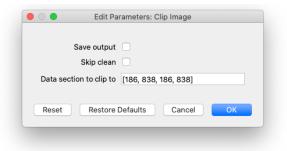
Output: This module creates no output; it allows the data set to pass through to the next modules in the reduction. For comparison with the output of the next module, we show the input file Oct_20_2016_0455.a.fits before any pipeline modules have been applied.

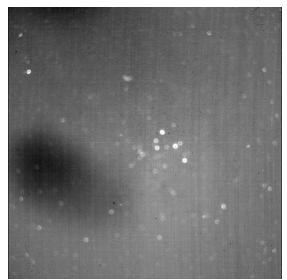

Oct_20_2016_0466.a.fits

2. Correct Nonlinearity: This module corrects the data for detector nonlinearity using the method described in <u>Vacca et al. (2004)</u>. It also creates a bad pixel mask that is associated with the data, which initially contains the locations of saturated pixels.

Options: You may notice an unusual (and non-local) file name in the 'Linearity correction file' field. If you installed the pipeline using pip or conda, the default file used in this step has not yet been installed. It will be automatically downloaded from cloud storage (which requires an internet connection) the first time this module is run and cached locally for future running of the pipeline. You can expect similar behavior for other pipeline modules that use reference data. (Note that if you installed from source, then these reference data files are download during the install) The 'Saturation level' value species the threshold used to flag saturated pixels that are then included in the bad pixel mask. If no saturation clipping is desired, no number should be entered in this field. By default, the output FITS file for this step is not saved.

Save outp	ut
Linearity correction file	earity_files/flitecam_lc_coeffs.fits
Saturation lev	vel 5000.0
Reset Restore Default	S Cancel OK

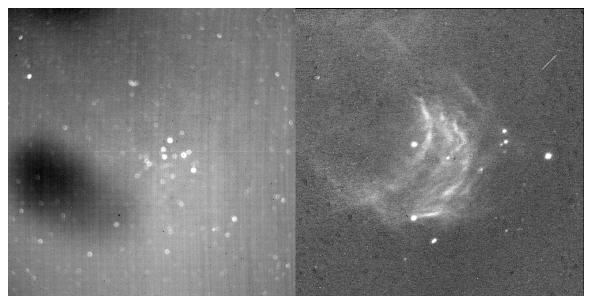

Output: The output from this step is shown below.


First extension of F0340_FC_IMA_0400585_FLTPAH329_LNZ_0466.fits.

3. Clip Image: This module selects the useable part of the image. The regions of the image nearer the edges display too much coma for accurate measurements. The module also identifies outlier (hot and cold) pixels and adds them to the bad pixel mask.

Options: The size of the cropped region can be controlled using the 'Data section to clip to' option. The default values should work in most cases, but there may be some data sets for which a larger or smaller image is desired. In those cases, the values are entered as [xmin,xmax,ymin,ymax], with the pixel counting starting at zero. The 'Skip clean' option, if selected, will retain hot and cold pixels instead of adding them to the bad pixel mask.

Output: The output of this step is the cropped image:

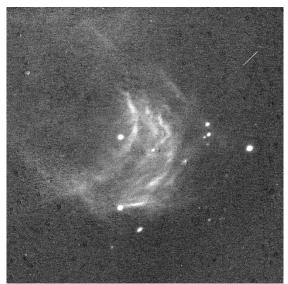

First extension of F0340_FC_IMA_0400585_FLTPAH329_CLP_0466.fits.

4 and 5. Make Flat and Correct Gain: Together, these modules correct the FLITECAM pixel-topixel gain variations. A flat is generated in step 4 based on sky images, and then it is applied to the data in step 5.

Options: Output FITS files are saved by default for step 4. Rather than having the pipeline generate a flat file from sky data, it's possible to provide a FITS file containing a flat field that can be used instead. Applying the gain correction is recommended, but it can be skipped by selecting the 'Skip gain correction' box. In this tutorial, we will apply the gain correction.

Save output
Reset Restore Defaults Cancel OK

Output: The 'Make Flat' creates a 'FLAT' extension in the FITS file that is then used in the 'Correct Gain' module. Example output of both modules are shown below.

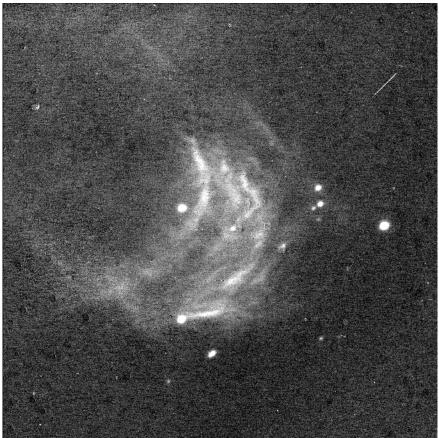

Left: The FLAT extension of F0340_FC_IMA_0400585_FLTPAH329_FLT_0466.fits Right: First extension of F0340_FC_IMA_0400585_FLTPAH329_GCR_0466.fits. With the gain correction applied, we can now clearly see the nebular emission from NGC 2023.

6. Subtract Sky: This module subtracts the background sky value for each image.

Options: The main two options for which background value to subtract are the normalization value from the 'Make Flat' module or the median of the image. For very large extended sources that fill a most of the image, like NGC 2023, the flat normalization value may yield better results. There is also an option to use an input FITS file that can be used to calculate the background value, but we will not use that here. In this tutorial, we will use the image median as the background value.

			Paramete		,	
		Sav	e output			
		Override s	ky file			
	S	kip sky sul	otraction			
Meth	od for	deriving s	ky value	Use im	age median	\$
			D ()			011
Rese	t	Restore	Defaults		Cancel	ОК

Output: In the image below, the background subtraction has been performed.

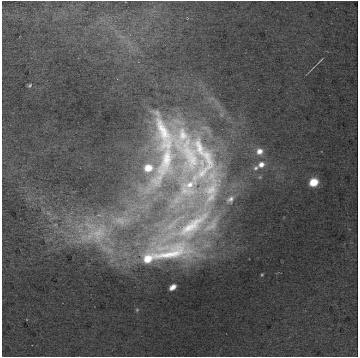

First extension of F0340_FC_IMA_0400585_FLTPAH329_BGS_0466.fits. This is similar to the output of the previous module, but it now has been background-subtracted.

7. Register Images: This module prepares the data to be combined in a later module by registering all images to a common frame.

Options: The default registration algorithm for combining data is 'Use WCS as is.' For data that have reliable WCS information, this is often the best option. If the WCS is suspect for some reason, we can either look at individual frames now to search for offsets, or we can examine the coadded image after module 9 to see if sources appear to be extended. If there is a WCS mismatch or if point sources are extended in the coadded image, one of the other options (centroid, cross-correlation, or no shift) can be used to try and align the images. For NGC 2023, we'll use the WCS as-is.

Save output	
Save output	
Registration algorithm	Use WCS as is
Override offsets for all images	
Expected FWHM for centroiding (pix)	6
Maximum shift for cross-correlation	100
Reset Restore Defaults	Cancel OK

Output: Because we selected to use WCS as-is, there is little difference in the output image in modules 6 and 7.

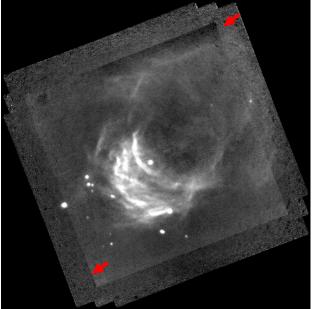

First extension of F0340_FC_IMA_0400585_FLTPAH329_REG_0466.fits.

8. Telluric Correct: This module corrects for the opacity of the atmosphere. The correction is based on the flight altitude and telescope zenith angle at the time of the observation, and ATRAN (courtesy of Steve Lord) as its atmospheric model.

Options: Saving the output files is the only option for this module.

	Save output 🗹	
Pacat	Restore Defaulte Cancel	OK
Reset	Restore Defaults Cancel	ОК

Output: This image looks similar to the output from module 7, but the scale of the image has changed based on the optical depth of the atmosphere.


First extension of F0340_FC_IMA_0400585_FLTPAH329_TEL_0466.fits.

9. Combine Images: Up until this module, the input files have been processed individually. Based on the image registration in module 7, the files are now combined into a single data product.

Options: There are three ways to combine multiple images—median, mean, and resample. The default option of 'median' typically works well, and is what we will use in this tutorial. The 'Use weighted mean' option is ignored when using the 'median' option. 'Robust combination' uses a sigma-clipping to reject outlier data points when combining the images, controlled by the values in the 'Outlier rejection threshold' and 'Maximum sigma-clipping iterations' fields. The 'Gaussian width for smoothing' parameter is used when the combination method is set to 'resample.'

Edit Parameters: C	ombine Images
Save output	
Skip coaddition	
Reference coordinate system	Target position
Combination method	median
Use weighted mean	
Robust combination	
Outlier rejection threshold (sigma)	8.0
Maximum sigma-clipping iterations	5
Gaussian width for smoothing (pixels)	1.0
Reset Restore Defaults	Cancel OK

Output: The combined image is rotated to align its axes with the J2000 coordinate system, with north up and east to the left. The image clearly shows artifacts along the edges of the input images, as well as some uneven background regions.

First extension of F0340_FC_IMA_0400585_FLTPAH329_COA_0440-0485.fits.

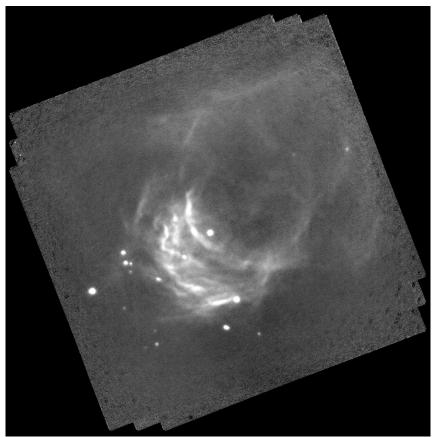
Often image artifacts such as the ones shown above can be traced back to bad input data. There are several ways to try and identify bad data, such as visually inspecting the input files (or the individual files produced after each pipeline module) or examining the FITS headers. In the *redux* GUI, we can quickly look at some FITS header parameters to search for potential problems by clicking on the 'File Information' tab. After some inspection of the table, it shows that 5 files have

unusually short exposure times of 1 second or less, compared to the nominal 20 seconds of exposure time for the rest of the files.

P	arameters Display \$	Settings																		
												Information 1								
ledux v2	0.0 for FLITECAM in imagi	ng mode								Da	a View File	Information L	log							
Loaded	files: 0.2016.0440.a.fits				Eile Name 🗠	09.007	OBSTYRE	408 ID	MISSNJID	DATE-ORS	INSTOCO	INSTMODE	SPECTEL1	SPECTEL2	SLIT	ALTI STA	7A START	EVETIME	DTHINDEX	NODREAS
Oct_2	2016_0441.a.fits 2_2016_0445.a.fits			1	Oct_20_2016_0440.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20108:43:45.343	IMAGING	STARE	FLT_PAH_329	NONE	NONE	42999.0	54.40679	0.2	UNKNOWN	UNKNOWN
Oct_2	0_2016_0445.a.fits 0_2016_0446.a.fits 0_2016_0447.a.fits			2	Oct_20_2016_0441.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20108:44:13.520	IMAGING	STARE	FLT_PAH_329	NONE	NONE	43004.0	54.402445	1.0	UNKNOWN	UNKNOWN
	0_2016_0447.a.fits			3	Oct_20_2016_0445.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T08:52:19.310	IMAGING	STARE	FLT_PAH_329	NONE	NONE	43005.0	53.560802	0.2	UNKNOWN	UNKNOWN
Uct_2	0_2016_0490.a.tits			4	Oct_20_2016_0446.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T08:54:20.699	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43003.0	53.398117	20.0	1	A
Ste	ip Undo F	Reduce	Reset	5	Oct_20_2016_0447.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20108:54:50.668	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43001.0	53.285614	20.0	2	A
Sten ti	nrough: 9. Combine li	mages	0	6	Oct_20_2016_0448.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20108:55:21.202	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42998.0	53.202954	20.0	3	A
				7	Oct_20_2016_0449.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T08:55:51.163	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42994.0	53.229064	20.0	4	A
1.	Check Headers	Edit	Run	8	Oct_20_2016_0450.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T08:56:21.613	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43002.0	53.135123	20.0	6	A
	Correct Nonlinearity		Run	9	Oct_20_2016_0451.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T08:56:51.688	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43005.0	53.107688	20.0	6	A
3.	Clip Image	Edit	Run	10	Oct_20_2016_0452.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20108:57:21.648	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43008.0	53.03496	20.0	7	A
4.	Make Flat	Edit	Run	11	Oct_20_2016_0453.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20108:57:51.650	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42998.0	53.025541	20.0	8	A
5	Correct Gain	Edit	Run	12	Oct_20_2016_0454.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T08:58:21.705	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43017.0	52.966532	20.0	9	A
0	Subtract Sky	Edit	Run	13	Oct_20_2016_0455.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2016-10-20T09:01:03.764	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43002.0	52.302418	20.0	UNKNOWN	UNKNOWN
0.	,			14	Oct_20_2016_0456.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2016-10-20109:01:34.157	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42998.0	52.250995	20.0	UNKNOWN	UNKNOWN
7.	Register Images	Edit	Run	15	Oct_20_2016_0457.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2016-10-20109:02:17.687	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42990.0	52.222167	20.0	UNKNOWN	UNKNOWN
			Run	16	Oct_20_2016_0459.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2016-10-20109:02:48.202	IMAGING	STARE	FLT_PAH_329	NONE	NONE	42996.0	52.579164	20.0	UNKNOWN	UNKNOWN
	Combine Images	Edit	Run	17	Oct_20_2016_0460.a.fits	NGC 2023	SKY	04_0058_5	2016-10-20_FC_F340	2016-10-20109:03:31.648	IMAGING	STARE	FLT_PAH_329	NONE	NONE	42998.0	52.639422	20.0	UNKNOWN	UNKNOWN
10.	Flux Calibrate	Edit	Run	18	Oct_20_2016_0461.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T09:07:03.720	IMAGING	STARE	FLT_PAH_329	NONE	NONE	43015.0	62.057727	1.0	UNKNOWN	UNKNOWN
11.	Make Image Map	Edit	Run	19	Oct_20_2016_0462.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T09:07:22.55	IMAGING	STARE	FLT_PAH_329	NONE	NONE	43000.0	52.030603	1.0	UNKNOWN	UNKNOWN
-				20	Oct_20_2016_0463.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20109:08:49.674	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42995.0	51.890461	20.0	1	A
				21	Oct_20_2016_0464.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20109:09:20.144	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43024.0	51.837236	20.0	2	A
				22	Oct_20_2016_0465.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T09:09:49.680	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42984.0	51.851091	20.0	3	A
				23	Oct_20_2016_0466.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T09:10:19.687	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42982.0	61.698149	20.0	4	A
				24	Oct_20_2016_0467.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20T09:10:50.178	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	43012.0	61.598183	20.0	5	A
				25	Oct_20_2016_0468.a.fits	NGC 2023	OBJECT	04_0058_5	2016-10-20_FC_F340	2016-10-20109:11:20.201	IMAGING	NOD_OFFARRAY	FLT_PAH_329	NONE	NONE	42991.0	51.659148	20.0	6	A
																			-	

The 'File Information' tab of the *redux* GUI. The red arrow shows where to click in the GUI to get to the 'File Information' tab, and the red boxes show the 5 files with short exposure times.

To see if these 5 files are causing the issues in the combined data product, we can remove them from the reduction and re-generate the combined file. To do this, click on 'File' \rightarrow 'Remove Files', then removing file numbers 440, 441, 445, 461, and 462. This action resets the pipeline back to module 1, which is exactly what we want. Any parameters in modules 1 through 9 that were changed from the default values have been retained, so there is no need to re-do any editing of parameters. To run all the way through 'Combine Images' (module 9), you can either click 'Run' for each step, or select '9. Combine Images' in the 'Step through:' drop-down menu and then click 'Step.'

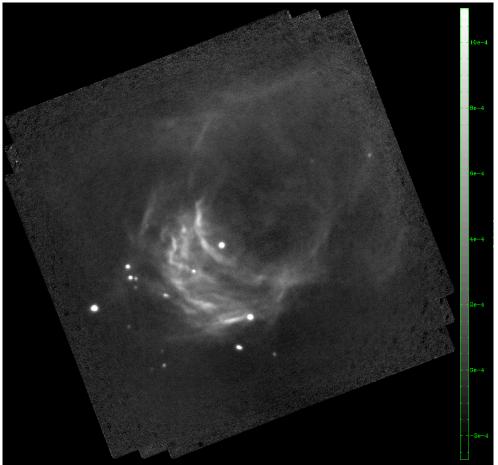

Now we can examine the resulting combined file after excluding the 5 potentially bad input files. Note that the filename has changed from our first attempt, from:

F0340_FC_IMA_0400585_FLTPAH329_COA_044<mark>0</mark>-0485.fits

to

F0340_FC_IMA_0400585_FLTPAH329_COA_044<mark>6</mark>-0485.fits.

The new coadded image is shown below.

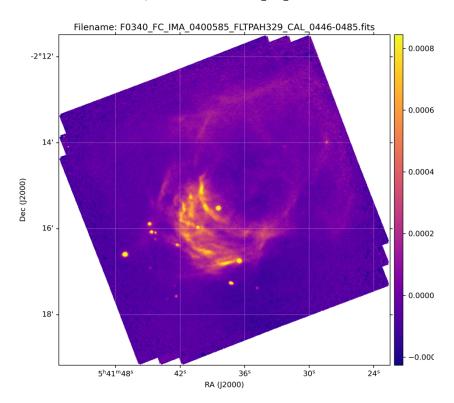

First extension of F0340_FC_IMA_0400585_FLTPAH329_COA_0446-0485.fits. The artifacts seen in the prior coadd are now largely removed.

10. Flux Calibrate: In this module, the calibration factor determined by the FLITECAM calibration team is applied to the coadded image

Options: Aside from the 'Save output' option, the options in this module are used by the FLITECAM calibration team to determine calibration factors from standards.

Save output	
Re-run photometry for standards	
Source position (x,y in pix)	
Photometry fit size (pix)	138
Initial FWHM (pix)	6.0
Profile type	Moffat 🗘
Reset Restore Defaults	Cancel OK

Output: This is now the final, calibrated image for the NGC 2023.


First extension of F0340_FC_IMA_0400585_FLTPAH329_CAL_0446-0485.fits

11. Make Image Map: This last module is used to generate a png file from the final data product. Options: These options control the look of the final png image.

Color map	plasma
Flux scale for image	[0.25, 99.9]
Number of contours	0
Contour color	gray
Filled contours	
Overlay grid	
Beam marker	
Watermark text	

Output:

Object: NGC 2023, Filter: FLT_PAH_329

