
SCI-US-HBK-OP10-2008
Rev: A

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
i

HAWC+ Data Reduction Pipeline Users

Manual

SCI-US-HBK-OP10-2008

Date: 4-26-2017
Revision: A

AFRC
Armstrong Flight Research Center
Edwards, CA 93523

German Space Agency, DLR
Deutsches Zentrum für Luft und
Raumfahrt

ARC
Ames Research Center
Moffett Field, CA 94035

SCI-US-HBK-OP10-2008
Rev: A

HAWC+ DRP Users Manual

SCI-US-HBK-OP10-2008

Prepared By:

Digitally signed by Melanie Clarke

Melanie Clarke DN: cn=Melanie Clarke, o=USRA, ou, email=mclarke@sofia.usra.edu, c=US

Date: 2017.05.02 12:53:26 -07'00'

Melanie Clarke, USRA, SOFIA DPS Development Lead Date

APPROVAL:

William D. Vacca Digitally signed by William D. Vacca
DN: cn=William D. Vacca, o=USRA, ou, email=wvacca@sofia.usra.edu, c=US
Date: 2017.05.02 17:15:42 -07'00'

William Vacca, USRA, SOFIA Associate Director for Science
Data Systems

 Date

Digitally signed by Roberta Leftwich-Vann

Roberta Leftwich-Vann DN: cn=Roberta Leftwich-Vann, o=SOFIA, ou=USRA
SOFIA, email=rleftwichvann@usra.edu, c=US
Date: 2017.05.03 17:19:12 -07'00'

Roberta Leftwich-Vann, USRA, SOFIA Program Manager Date

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
ii

SCI-US-HBK-OP10-2008
Rev: A

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
iii

REVISION HISTORY

REV DATE DESCRIPTION
- 03/07/17 Initial Release
A 4/26/17 Updates for HAWC DRP v1.1.0: updated data products table for

new saved file defaults (Section 4); changed description of flat
correction (Section 3.1.3); added ATRAN model to CRUSH
options descriptions (Section a.5).

SOF-US-HBK-OP10-2008
Rev. A

HAWC+ DRP User’s Manual
SOF-US-HBK-OP10-2008

M. Berthoud, A. Kovács, F. Santos, G. Novak, M. Clarke

May 1, 2017

Contents

1 Introduction 4

2 SI Observing Modes Supported 4
2.1 HAWC+ Instrument Information . 4
2.2 HAWC+ Observing Modes . 5

3 Algorithm Description 5
3.1 Chop-Nod and Nod-Pol Reduction Algorithms 5

3.1.1 Prepare . 6
3.1.2 Demodulate . 11
3.1.3 Flat Correct . 11
3.1.4 Align Arrays . 12
3.1.5 Split Images . 12
3.1.6 Combine Images . 13
3.1.7 Subtract Beams . 13
3.1.8 Compute Stokes . 13
3.1.9 Update WCS . 14
3.1.10 Correct for Atmospheric Opacity . 14
3.1.11 Subtract Background . 15
3.1.12 Subtract Instrumental Polarization 15
3.1.13 Rotate Polarization Coordinates . 16
3.1.14 Merge Images . 16
3.1.15 Calibrate Flux . 17
3.1.16 Compute Vectors . 17

3.2 Scan Reduction Algorithms . 19
3.2.1 Signal Structure . 19

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
1

SOF-US-HBK-OP10-2008
Rev. A

3.2.2 Sequential Incremental Modeling and Iterations 21
3.2.3 DC O↵set and 1/f Drift Removal . 21
3.2.4 Correlated Noise Removal and Gain Estimation 23
3.2.5 Noise Weighting . 24
3.2.6 Despiking . 25
3.2.7 Spectral Conditioning . 25
3.2.8 Map Making . 26
3.2.9 Point-Source Flux Corrections . 28
3.2.10 CRUSH output . 29

3.3 Other Resources . 29

4 Data Products 30
4.1 File names . 30
4.2 Data format . 30
4.3 Pipeline products . 31

5 Grouping Level 0 Data for Processing 32

6 Configuration and Execution 32
6.1 Installation . 32

6.1.1 External Requirements . 33
6.1.2 Source Code Installation . 33

6.2 Configuration . 34
6.3 Input Data . 35

6.3.1 Auxiliary Files . 36
6.4 Automatic Mode Execution . 37
6.5 Manual Mode Execution . 37
6.6 Important Parameters . 38

6.6.1 DRP parameters . 38
6.6.2 CRUSH parameters . 41

7 Data Quality Assessment 42

A Appendix: Alternate Pipeline Execution Modes 44
A.1 DRP Command-Line Reduction . 44
A.2 DRP Interactive Python Reduction . 45
A.3 Web Data View . 46
A.4 In-Flight Autoreduce . 48
A.5 CRUSH Command Line Reduction . 49

A.5.1 Downloading and Installing CRUSH 49
A.5.2 Optional Startup Environment and Java Configuration 50
A.5.3 Running CRUSH . 51

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
2

SOF-US-HBK-OP10-2008
Rev. A

A.5.4 Command-Line Options . 52
A.5.5 CRUSH News, Feedback, and Bug Reports 53

A.6 IDL Redux Interface . 53
A.6.1 Installation . 53
A.6.2 Running Redux . 54

B Appendix: Sample Configuration Files 56
B.1 Full DRP Configuration File . 56
B.2 DRP Override Configuration File . 66
B.3 Full CRUSH Configuration File . 67

C Appendix: Required Header Keywords 82

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
3

SOF-US-HBK-OP10-2008
Rev. A

1 Introduction

The SI Pipeline Users Manual (OP10) is intended for use by both SOFIA Science Center
sta↵ during routine data processing and analysis, and also as a reference for General Inves-
tigators (GIs) and archive users to understand how the data in which they are interested
was processed. This manual is intended to provide all the needed information to execute
the SI Level 2 and 3 Pipeline, and assess the data quality of the resulting products. It will
also provide a description of the algorithms used by the pipeline and both the final and
intermediate data products.

A description of the current pipeline capabilities, testing results, known issues, and installa-
tion procedures are documented in the SI Pipeline Software Version Description Document
(SVDD, SW06, DOCREF). The overall Verification and Validation (V&V) approach can
be found in the Data Processing System V&V Plan (SV01-2232). Both documents can be
obtained from the SOFIA document library in Windchill at location: / Software Manage-
ment Development or Verification / Pipelines (DPS).

This manual applies to HAWC DRP version 1.1.0.

2 SI Observing Modes Supported

2.1 HAWC+ Instrument Information

HAWC+ is the upgraded and redesigned incarnation of the High-Resolution Airborne
Wide-band Camera instrument (HAWC), built for SOFIA. Since the original design never
collected data for SOFIA, the instrument may be alternately referred to as HAWC or
HAWC+. HAWC+ is designed for far-infrared imaging observations in either total intensity
(imaging) or polarimetry mode.

HAWC currently consists of dual TES BUG Detector arrays in a 64x40 rectangular format.
A six-position filter wheel is populated with five broadband filters ranging from 40 to 250
µm and a dedicated position for diagnostics. Another wheel holds pupil masks and rotating
half-wave plates (HWPs) for polarization observations. A polarizing beam splitter directs
the two orthogonal linear polarizations to the two detectors (the reflected (R) array and
the transmitted (T) array). Each array was designed to have two 32x40 subarrays, for four
total detectors (R0, R1, T0, and T1), but T1 is not currently available for HAWC. Since
polarimetry requires paired R and T pixels, it is currently only available for the R0 and
T0 arrays. Total intensity observations may use the full set of 3 subarrays.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
4

SOF-US-HBK-OP10-2008
Rev. A

2.2 HAWC+ Observing Modes

The HAWC instrument has two instrument configurations, for imaging and polarization
observations. In both types of observations, removing background flux due to the telescope
and sky is a challenge that requires one of several observational strategies. The HAWC
instrument may use the secondary mirror to chop rapidly between two positions (source
and sky), may use discrete telescope motions to nod between di↵erent sky positions, or may
use slow continuous scans of the telescope across the desired field. In chopping and nodding
strategies, sky positions are subtracted from source positions to remove background levels.
In scanning strategies, the continuous stream of data is used to solve for the underlying
source and background structure.

The instrument has three standard observing modes for imaging: the Chop-Nod instru-
ment mode combines traditional chopping with nodding, the Chop-Scan mode combines
traditional chopping with slow scanning of the SOFIA telescope, and the Scan mode uses
slow telescope scans without chopping. The Scan mode is the most commonly used for
science observations. The Nod-Pol observing mode is used for all polarization observations.
This mode includes chopping and nodding cycles in multiple HWP positions.

All modes that include chopping or nodding may be chopped and nodded on-chip or o↵-
chip. Currently, only two-point chop patterns with matching nod amplitudes (nod-match-
chop) are used in either Chop-Nod or Nod-Pol observations, and nodding is performed in
an A-B-B-A pattern only. All HAWC modes can optionally have a small dither pattern or
a larger mapping pattern, to cover regions of the sky larger than HAWC’s fields of view.
Scanning patterns may be either box rasters or Lissajous patterns.

3 Algorithm Description

The data reduction pipeline for HAWC has two main branches of development: the HAWC
DRP provides the Chop-Nod and Nod-Pol reduction algorithms, as well as the calling
structure for all steps. Scan mode reduction algorithms are provided by a standalone
package called CRUSH that may be called from the DRP.

3.1 Chop-Nod and Nod-Pol Reduction Algorithms

The following sections describe the major algorithms used to reduce Chop-Nod and Nod-
Pol observations. In nearly every case, Chop-Nod (total intensity) reductions use the same
methods as Nod-Pol observations, but either apply the algorithm to the data from the single
HWP angle available, or else, if the step is specifically for polarimetry, have no e↵ect when

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
5

SOF-US-HBK-OP10-2008
Rev. A

called on total intensity data. Since nearly all total intensity HAWC observations are taken
with scanning mode, the following sections will focus primarily on Nod-Pol data.

See the figures below for flow charts that illustrate the data reduction process for Nod-Pol
data (Figures 1 and 2) and Chop-Nod data (Figures 3 and 4).

3.1.1 Prepare

The first step in the pipeline is to prepare the raw data for processing, by rearranging and
regularizing the raw input data tables, and performing some initial calculations required
by subsequent steps.

The raw (Level 0) HAWC files contain all information in FITS binary table extensions
located in two Header Data Unit (HDU) extensions. The raw file contains:

• Primary HDU: Contains the necessary FITS keywords in the header but no data. It
contains all required keywords for SOFIA, plus all keywords required to reduce or
characterize the various observing modes. Extra keywords (either from the SOFIA
keyword dictionary or otherwise) have been added for human parsing.

• CONFIGURATION HDU (EXTNAME = CONFIGURATION): HDU containing
MCE (detector electronics) configuration data. This HDU is omitted for products
after Level 1, so it is stored only in the raw and demodulated files. Nominally, it is the
first HDU but users should use EXTNAME to identify the correct HDUs. Note, the
“HIERARCH” keyword option and long strings are used in this HDU. All keyword
names are prefaced with “MCEn” where n=0,1,2,3. Only the header is used in this
HDU.

• TIMESTREAM Data HDU (EXTNAME = TIMESTREAM): Contains a binary ta-
ble with data from all detectors, with one row for each time sample. The raw detector
data is stored in the column “SQ1Feedback”, in FITS (data-store) indices, i.e. 41
rows and 128 columns. Columns 0-31 are for subarray R0, 32-63 for R1, 64-95 for T0
and 96-127 for T1). Additional columns contain other important data and metadata,
including time stamps, instrument encoder readings, chopper signals, and astrometry
data.

In order to begin processing the data, the pipeline first splits these input TIMESTREAM
data arrays into separate R and T tables. It will also compute nod and chop o↵set values
from telescope data, and may also delete, rename, or replace some input columns in order
to format them as expected by later algorithms. The output data from this step has the
same HDU structure as the input data, but the detector data is now stored in the “R
Array” and “T Array” fields, which have 41 rows and 64 columns each.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
6

SOF-US-HBK-OP10-2008
Rev. A

Figure 1: Nod-Pol data reduction flowchart, up through Stokes parameter calculation for
a single input file

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
7

SOF-US-HBK-OP10-2008
Rev. A

Figure 2: Nod-Pol data reduction flowchart, picking up from Stokes parameter calculation,
through combining multiple input files

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
8

SOF-US-HBK-OP10-2008
Rev. A

Figure 3: Chop-Nod data reduction flowchart, up through Stokes parameter calculation
for a single input file

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
9

SOF-US-HBK-OP10-2008
Rev. A

Figure 4: Chop-Nod data reduction flowchart, picking up from Stokes parameter calcula-
tion, through combining multiple input files

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
10

SOF-US-HBK-OP10-2008
Rev. A

3.1.2 Demodulate

For both Chop-Nod and Nod-Pol instrument modes, data is taken in a two-point chop
cycle. In order to combine the data from the high and low chop positions, the pipeline
demodulates the raw time stream with either a square or sine wave-form. Throughout this
step, data for each of the R and T arrays are handled separately.

During demodulation, a number of filtering steps are performed to identify good data.
By default, the raw data is first filtered with a box high-pass filter with a time constant
of one over the chop frequency. Then, any data taken during telescope movement (line-
of-sight rewinds, for example, or tracking errors) is flagged for removal. In square wave
demodulation, samples are then tagged as being in the high-chop state, low-chop state, or
in between (not used). For each complete chop cycle within a single nod position at a single
HWP angle, the pipeline computes the average of the signal in the high-chop state and
subtracts it from the average of the signal in the low-chop state. Incomplete chop cycles
at the end of a nod or HWP position are discarded. The sine-wave demodulation proceeds
similarly, except that the data are weighted by a sine wave instead of being considered
either purely high or purely low state.

During demodulation, the data is also corrected for the phase delay in the readout of
each pixel, relative to the chopper signal. For square wave demodulation, the phase delay
time is multiplied by the sample frequency to calculate the delay in data samples for each
individual pixel. The data is then shifted by that many samples before demodulating.
For sine wave demodulation, the phase delay time is multiplied with 2⇡ times the chop
frequency to get the phase shift of the demodulating wave-form in radians.

The result of the demodulation process is a chop-subtracted, time-averaged value for each
nod position, HWP angle, and array. The output is stored in a new FITS table, in the
extension called DEMODULATED DATA, which replaces the TIMESTREAM data exten-
sion. The CONFIGURATION extension is left unmodified.

3.1.3 Flat Correct

After demodulation, the pipeline corrects the data for pixel-to-pixel gain variations by
applying a flat field correction. Flat files for each filter band may provided to the pipeline
by the instrument team, or they may be generated on the fly from internal calibrator files
(CALMODE=INT CAL) taken alongside the science data. Either way, flat files contain
normalized gains for the R and T array, so that they are corrected to the same level. Flat
files also contain a bad pixel mask, with zero values indicating good pixels and any other
value indicating a bad pixel. Pixels marked as bad are set to NaN in the gain data. To
apply the gain correction and mark bad pixels, the pipeline multiplies the R and T array

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
11

SOF-US-HBK-OP10-2008
Rev. A

data by the appropriate flat data. Since the T1 subarray is not available, all pixels in the
right half of the T array are marked bad at this stage.

The output from this step contains FITS images that are propagated through the rest
of the pipeline steps. The R array data is stored as an image in the primary HDU; the
T array data, R bad pixel mask, and T bad pixel mask are stored as images in exten-
sions 1 (EXTNAME=“T ARRAY”), 2 (EXTNAME=“R BAD PIXEL MASK”), and 3
(EXTNAME=“T BAD PIXEL MASK”), respectively. The DEMODULATED DATA ta-
ble is attached unmodified as extension 4. The R and T array images are 3D cubes, with
dimension 64x41xN

frame

, where N
frame

is the number of nod positions in the observation,
times the number of HWP positions.

3.1.4 Align Arrays

In order to correctly pair R and T pixels for calculating polarization, and to spatially align
all subarrays, the pipeline must reorder the pixels in the raw images. The last row is
removed, R1 and T1 subarray images (columns 32-64) are rotated 180 degrees, and then
all images are inverted along the y-axis. Small shifts between the R0 and T0 and R1 and
T1 subarrays may also be corrected for at this stage. The spatial gap between the 0 and 1
subarrays is also recorded in the ALNGAPX and ALNGAPY FITS header keywords, but
is not added to the image; it is accounted for in a later resampling of the image. Note that
all corrections applied in this step are integer shifts only; no interpolation is performed.
The output images are 64x40xN

frame

.

3.1.5 Split Images

To prepare for combining nod positions and calculating Stokes parameters, the pipeline next
splits the data into separate images for each nod position at each HWP angle, calculates
the sum and di↵erence of the R and T arrays, and merges the R and T array bad pixel
masks. The algorithm uses data from the DEMODULATED DATA table to distinguish
the high and low nod positions and the HWP angle. At this stage, any pixel for which
there is a good pixel in R but not in T, or vice versa, is noted as a “widow pixel.” In
the sum image (R+T), each widow pixel’s flux is multiplied by 2 to scale it to the correct
total intensity. In the merged bad pixel mask, widow pixels are marked with the value 1
(R only) or 2 (T only), so that later steps may handle them appropriately.

The output from this step contains a large number of FITS extensions: one DATA image
extension for each of R+T and R-T for each HWP angle and nod position, as well as a
TABLE extension containing the demodulated data for each HWP angle and nod position,
and a single merged BAD PIXELMASK image. For a typical Nod-Pol observation with two

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
12

SOF-US-HBK-OP10-2008
Rev. A

nod positions and four HWP angles, there are 8 R+T images, 8 R-T images, 8 binary tables,
and 1 bad pixel mask image, for 25 extensions total, including the primary HDU. The
output images, other than the bad pixel mask, are 3D cubes with dimension 64x40xN

chop

,
where N

chop

is the number of chop cycles at the given HWP angle.

3.1.6 Combine Images

The pipeline combines all chop cycles at a given nod position and HWP angle by computing
a robust mean of all the frames in the R+T and R-T images. The robust mean is computed
at each pixel using Chauvenet’s criterion, iteratively rejecting pixels more than 3� from
the mean value, by default. The associated standard deviation across the frames is stored
as an error image in the output. The covariances between the pixels may also be calculated
and stored in the output, for later use in resampling the images.

The output from this step contains the same FITS extensions as in the previous step,
with all images now reduced to 2D images with dimensions 64x40. In addition, there are
ERROR and COVAR image extensions for each nod position and HWP angle. Currently,
covariances are not used in resampling, so they are not calculated for e�ciency reasons;
the COVAR images will contain NaN values only. In the example above, with two nod
positions and four HWP angles, there are now 57 total extensions, including the primary
HDU.

3.1.7 Subtract Beams

In this pipeline step, the sky nod positions (B beams) are subtracted from the source nod
positions (A beams) at each HWP angle and for each set of R+T and R-T, and the resulting
flux is divided by two for normalization. The errors previously calculated in the combine
step are propagated accordingly. The output contains extensions for DATA, ERROR, and
COVAR images for each set, as well as a table of demodulated data for each HWP angle,
and the bad pixel mask.

3.1.8 Compute Stokes

From the R+T and R-T data for each HWP angle, the pipeline now computes images
corresponding to the Stokes I, Q, and U parameters for each pixel.

Stokes I is computed by averaging the R+T signal over all HWP angles:

I =
1

N

NX

�=1

(R+ T)(�),

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
13

SOF-US-HBK-OP10-2008
Rev. A

where N is the number of HWP angles and (R + T)(�) is the summed R+T flux at the
HWP angle �. The associated uncertainty in I is generally propagated from the previously
calculated errors for R+T, but may be inflated by the median of the standard deviation of
the R+T values across the HWP angles if necessary.

In the most common case of four HWP angles at 0, 45, 22.5, and 67.5 degrees, Stokes Q
and U are computed as:

Q =
1

2
[(R� T)(0)� (R� T)(45)]

U =
1

2
[(R� T)(22.5)� (R� T)(67.5)]

where (R� T)(�) is the di↵erential R-T flux at the HWP angle �. Uncertainties in Q and
U are propagated from the input error values on R-T.

The output from this step contains an extension for the flux, error, and covariance of each
Stokes parameter, as well as the bad pixel mask and a table of the demodulated data,
with columns from each of the HWP angles merged. The STOKES I flux image is in
the primary HDU. For Nod-Pol data, there will be 10 additional extensions (ERROR I,
COVAR I, STOKES Q, ERROR Q, COVAR Q, STOKES U, ERROR U, COVAR U, BAD
PIXEL MASK, TABLE DATA). For Chop-Nod imaging, only Stokes I is calculated, so
there are 4 additional extensions (ERROR I, COVAR I, BAD PIXEL MASK, TABLE
DATA).

3.1.9 Update WCS

To associate the pixels in the Stokes parameter image with sky coordinates, the pipeline
uses FITS header keywords describing the telescope position to calculate the reference RA
and Dec (CRVAL1/2), the pixel scale (CDELT1/2), and the rotation angle (CROTA2). It
may also correct for small shifts in the pixel corresponding to the instrument boresight,
depending on the filter used, by modifying the reference pixel (CRPIX1/2). These standard
FITS world coordinate system (WCS) keywords are written to the header of the primary
HDU.

3.1.10 Correct for Atmospheric Opacity

In order to combine images taken under di↵ering atmospheric conditions, the pipeline
corrects the flux in each individual file for the estimated atmospheric transmission during
the observation, based on the altitude and zenith angle at the time when the observation
was obtained.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
14

SOF-US-HBK-OP10-2008
Rev. A

Atmospheric transmission values in each HAWC+ filter have been computed for a range
of telescope elevations and observatory altitudes (corresponding to a range of overhead
precipitable water vapor values) using the ATRAN atmospheric modeling code, provided
to the SOFIA program by Steve Lord. The ratio of the transmission at each altitude and
zenith angle, relative to that at the reference altitude (41,000 feet) and reference zenith
angle (45 degrees), has been calculated for each filter and fit with a low-order polynomial.
The ratio appropriate for the altitude and zenith angle of each observation is calculated
from the fit coe�cients. The pipeline applies this relative opacity correction factor directly
to the flux in the Stokes I, Q, and U images, and propagates it into the corresponding error
images.

3.1.11 Subtract Background

After chop and nod subtraction, some residual background noise may remain in the flux
images. After flat correction, some residual gain variation may remain as well. To remove
these, the pipeline reads in all images in a reduction group, and then iteratively performs
the following steps:

• Smooth and combine the input Stokes I images

• Compare each Stokes I image (smoothed) to the combined map to determine any
background o↵set or scaling

• Remove o↵set and scaling from input (unsmoothed) Stokes I images

The final determined o↵sets (a) and scales (b) for each file are applied to the flux F 0 for
each Stokes image as follows:

F 0
I

= (F
I

� a)/b

F 0
Q

= F
Q

/b

F 0
U

= F
U

/b

and are propagated into the associated error images appropriately.

3.1.12 Subtract Instrumental Polarization

The instrument and the telescope itself may introduce some foreground polarization to the
data which must be removed to determine the polarization from the astronomical source.
The instrument team characterizes the introduced polarization in reduced Stokes (q = Q/I
and u = U/I) from the instrument and the telescope for each filter band. The combined
reduced Stokes parameters are calculated as

q0 = q
i

+ q
t

cos(2E) + u
t

sin(2E)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
15

SOF-US-HBK-OP10-2008
Rev. A

u0 = u
i

� q
t

sin(2E) + u
t

cos(2E)

where q
i

and u
i

are the instrumental polarization parameters, q
t

and u
t

are the telescope
polarization parameters, and E is the average telescope elevation during the observation.
The correction is then applied as

Q0 = Q� q0I

U 0 = U � u0I

and propagated to the associated error images as

�0
Q

=
q
(q0�

I

)2 + �2
Q

.

�0
U

=
q
(u0�

I

)2 + �2
U

.

The correction is expected to be good to within Q/I < 0.6% and U/I < 0.6%.

3.1.13 Rotate Polarization Coordinates

The Stokes Q and U parameters, as calculated so far, reflect polarization angles measured
in detector coordinates. After the foreground polarization is removed, the parameters may
then be rotated into sky coordinates. The pipeline calculates a relative rotation angle,
↵, that accounts for the vertical position angle of the instrument, the initial angle of the
half-wave plate position, and an o↵set position that is di↵erent for each HAWC filter. It
applies it to the Q and U images with a standard rotation matrix:

✓
Q0

U 0

◆
=

cos(↵) �sin(↵)
sin(↵) cos(↵)

�✓
Q
U

◆
.

Likewise, for the errors �, the pipeline calculates

✓
�

02
Q

�
02
U

◆
=

cos2(↵) �sin2(↵)
sin2(↵) cos2(↵)

�✓
�2
Q

�2
U

◆
,

takes the square root, and stores the result as the error images for Stokes Q and U.

3.1.14 Merge Images

All steps up until this point produce an output file for each input file taken at each telescope
dither position, without changing the pixelization of the input data. To combine files taken
at separate locations into a single map, the pipeline resamples the flux from each onto a
common grid, defined such that North is up and East is to the left. The WCS from each

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
16

SOF-US-HBK-OP10-2008
Rev. A

input file is used to determine the sky location of all the input pixels, then, for each pixel in
the output grid, the algorithm considers all input pixels within a given radius that are not
marked as bad pixels. It weights the input pixels by a Gaussian function of their distance
from the grid point and, optionally, their associated errors and/or covariances. The value
at the output grid pixel is the weighted average of the input pixels within the considered
window.

The output from this step is a single FITS file, containing a flux and error image for each
of Stokes I, Q, and U. The dimensions of the output image may vary somewhat, depending
on the input parameters to the resampling algorithm, but typically the output pixel scale
is similar to the input scale. An image mask is also produced, which represents how many
input pixels went into each output pixel. Because of the waiting scheme, the values in this
mask are not integers. A data table containing demodulated data merged from all input
tables is also attached to the file.

3.1.15 Calibrate Flux

The pipeline now converts the flux units from instrumental counts to physical units of
Jy/pixel. For each filter band, the instrument team determines a calibration factor in
Jy/pixel/counts appropriate to data that has been opacity-corrected to the reference zenith
angle and altitude. This factor is directly applied to the flux in each of the Stokes I, Q, and
U and associated error images. The overall calibration is expected to be good to within
about 10%.

The output of this step is the final output from the pipeline for Chop-Nod imaging
data.

3.1.16 Compute Vectors

Using the Stokes I, Q, and U images, the pipeline now computes the polarization percentage
(p) and angle (✓) and their associated errors (�) in the standard way. For the polarization
angle ✓ in degrees:

✓ =
90

⇡
arctan(

U

Q
)

�
✓

=
90

⇡(Q2 + U2)

q
Q2�2

U

+ U2�2
Q

.

The percent polarization (p) and its error are calculated from the reduced Stokes parame-
ters q and u

q = Q/I

u = U/I

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
17

SOF-US-HBK-OP10-2008
Rev. A

and their errors
�
q

=
q
�2
Q

+ (Q�2
I

)/I

�
u

=
q
�2
U

+ (U�2
I

)/I

as
p = 100

p
q2 + u2

�
p

=
1

p

q
q2�2

q

+ u2�2
u

.

The debiased polarization percentage (p0)is also calculated, as:

p0 = 100
q
p2 � �2

p

.

Each of the ✓, p, and p0 maps and their error images are stored as separate extensions in
the output from this step, which is the final output from the pipeline for Nod-Pol data.
This file will have 15 extensions, including the primary HDU, with extension names, types,
and numbers as follows:

• STOKES I: primary HDU, image, extension 0

• ERROR I: image, extension 1

• STOKES Q: image, extension 2

• ERROR Q: image, extension 3

• STOKES U: image, extension 4

• ERROR U: image, extension 5

• IMAGE MASK: image, extension 6

• PERCENT POL: image, extension 7

• DEBIASED PERCENT POL: image, extension 8

• ERROR PERCENT POL: image, extension 9

• POL ANGLE: image, extension 10

• ROTATED POL ANGLE: image, extension 11

• ERROR POL ANGLE: image, extension 12

• MERGED DATA: table, extension 13

• POL DATA: table, extension 14

The final extension contains a table representation of the polarization values for each pixel,
as an alternate representation of the ✓, p, and p0 maps.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
18

SOF-US-HBK-OP10-2008
Rev. A

3.2 Scan Reduction Algorithms

This section covers the main algorithms used to reduce Scan mode data with CRUSH. It
is meant to give the reader an accurate, if incomplete, overview of the principal reduction
process.

3.2.1 Signal Structure

CRUSH is based on the assumption that the measured data (X
ct

) for detector c, recorded
at time t, is the superposition of various signal components and essential (not necessarily
white) noise n

ct

:

X
ct

= D
ct

+ g(1),cC(1),t + ...+ g(n),cC(n),t +G
c

Mxy

ct

S
xy

+ n
ct

We can model the measured detector timestreams via a number of appropriate parame-
ters, such as 1/f drifts (D

ct

), n correlated noise components (C(1),t...C(n),t) and channel
responses to these (gains, g(1),c...g(n),c), and the observed source structure (S

xy

). We can
derive statistically sound estimates (such as maximum-likelihood or robust estimates) for
these parameters based on the measurements themselves. As long as our model is repre-
sentative of the physical processes that generate the signals, and su�ciently complete, our
derived parameters should be able to reproduce the measured data with the precision of
the underlying limiting noise.

Below is a summary of the principal model parameters assumed by CRUSH, in gen-
eral:

• X
ct

: The raw timestream of channel c, measured at time t.

• D
ct

: The 1/f drift value of channel c at time t.

• g(1),c...g(n),c: Channel c gain (response) to correlated signals (for modes 1 through
n).

• C(1),t...C(n),t: Correlated signals (for modes 1 through n) at time t.

• G
c

: The point source gain of channel c

• Mxy

ct

: Scanning pattern, mapping a sky position {x, y} into a sample of channel c at
time t.

• S
xy

: Actual 2D source flux at position {x, y}.

• n
ct

: Essential limiting noise in channel c at time t.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
19

SOF-US-HBK-OP10-2008
Rev. A

Figure 5: Scan data reduction flowchart

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
20

SOF-US-HBK-OP10-2008
Rev. A

3.2.2 Sequential Incremental Modeling and Iterations

The approach of CRUSH is to solve for each term separately, and sequentially, rather than
trying to do a brute-force matrix inversion in a single step. Such inversions are not practical
for several reasons, anyway: (1) because they require a-priori knowledge of all gains and
weights (covariance matrix) with great precision, (2) because they require bad data to
be identified prior to inversion, (3) because degeneracies are not handled in a controlled /
controllable way, (4) because linear inversions do not handle non-linearities with ease (such
as solving for both gains and signals when these form a product), (5) because of the need to
include spectral filtering, typically, and (6) because matrix inversions are computationally
costly.

Sequential modeling works on the assumption that each term can be considered indepen-
dently from one another. To a large degree this is granted as many of the signals produce
more or less orthogonal imprints in the data (e.g. you cannot easily mistake correlated
sky response seen by all channels with a per-channel DC o↵set). As such, from the point
of view of each term, the other terms represent but an increased level of noise. As the
terms all take turns in being estimated (usually from bright to faint) this model confusion
“noise” goes away, especially with iterations.

Even if the terms are not perfectly orthogonal to one another, and have degenerate flux
components, the sequential approach handles this naturally. Degenerate fluxes between a
pair of terms will tend to end up in the term that is estimated first. Thus, the ordering
of the estimation sequence provides a control on handling degeneracies in a simple and
intuitive manner.

A practical trick for e�cient implementation is to replace the raw timestream with the
unmodeled residuals X

ct

! R
ct

, and let modeling steps produce incremental updates to
the model parameters. Every time a model parameter is updated, its incremental imprint is
removed from the residual timestream (a process we shall refer to a synchronization).

With each iteration, the incremental changes to the parameters become more insignificant,
and the residual will approach the limiting noise of the measurement.

3.2.3 DC O↵set and 1/f Drift Removal

For 1/f drifts, consider only the term:

R
ct

⇡ �D
c⌧

where �D
c⌧

is the 1/f channel drift value for t between ⌧ and ⌧+T , for a 1/f time window of
T samples. That is, we simply assume that the residuals are dominated by an unmodeled

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
21

SOF-US-HBK-OP10-2008
Rev. A

1/f drift increment �D
c⌧

. Note that detector DC o↵sets can be treated as a special case
with ⌧ = 0, and T equal to the number of detector samples in the analysis.

We can construct a �2 measure, as:

�2 =
t=⌧+TX

c,t=⌧

w
ct

(R
ct

� �D
ct

)2

where w
ct

= ��2
ct

is the proper noise-weight associated with each datum. CRUSH further-
more assumes that the noise weight of every sample w

ct

can be separated into the product
of a channel weight w

c

and a time weight w
t

, i.e. w
ct

= w
c

·w
t

. This assumption is identical
to that of separable noise (�

ct

= �
c

· �
t

). Then, by setting the �2 minimizing condition
@�2/@(�D

ct

) = 0, we arrive at the maximum-likelihood incremental update:

�D
c⌧

=

⌧+TP
t=⌧

w
t

R
ct

⌧+TP
t=⌧

w
t

Note, that each sample (R
ct

) contributes a fraction:

p
ct

= w
t

/
⌧+TX

t=⌧

w
t

to the estimate of the single parameter �D
c⌧

. In other words, this is how much that
parameter is dependent on each data point. Above all, p

ct

is a fair measure of the fractional
degrees of freedom lost from each datum, due to modeling of the 1/f drifts. We will use
this information later, when estimating proper noise weights.

Note, also, that we may replace the maximum-likelihood estimate for the drift parameter
with any other statistically sound estimate (such as a weighted median), and it will not
really change the dependence, as we are still measuring the same quantity, from the same
data, as with the maximum-likelihood estimate. Therefore, the dependence calculation
remains a valid and fair estimate of the degrees of freedom lost, regardless of what statistical
estimator is used.

The removal of 1/f drifts must be mirrored in the correlated signals also if gain solutions are
to be accurate. Finally, following the removal of drifts, CRUSH will check the timestreams
for inconsistencies. For example, HAWC data is prone to discontinuous jumps in flux levels.
CRUSH will search the timestream for flux jumps, and flag or fix jump-related artifacts as
necessary.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
22

SOF-US-HBK-OP10-2008
Rev. A

3.2.4 Correlated Noise Removal and Gain Estimation

For the correlated noise (mode i), we shall consider only the term with the incremental
signal parameter update:

R
ct

= g(i),c�C(i),t + ...

Initially, we can assume C(i),t as well as g(i),c = 1, if better values of the gain are not
independently known at the start. Accordingly, the �2 becomes:

�2 =
X

c

w
ct

(R
ct

� g(i),c�C(i),t)
2.

Setting the �2 minimizing condition with respect to �C(i),t yields:

�C(i),t =

P
c

w
c

g(i),cRct

P
c

w
c

g2(i),c
.

The dependence of this parameter on R
ct

is:

p
ct

= w
c

g2(i),c/
X

c

w
c

g2(i),c

After we update C(i) (the correlated noise model for mode i) for all frames t, we can update
the gain response as well in an analogous way, if desired. This time, consider the residuals
due to the unmodeled gain increment:

R
ct

= �g(i),cC(i),t + ...

and
�2 =

X

t

w
ct

(R
ct

� �g(i),cC(i),t)
2

Minimizing it with respect to �g(i),c yields:

�g(i),c =

P
t

w
t

C(i),tRct

P
t

w
t

C2
(i),t

which has a parameter dependence:

p
ct

= w
t

C2
(i),t/

X

t

w
t

C2
(i),t

Because the signal C
t

and gain g
c

are a product in our model, scaling C
t

by some factor
X, while dividing g

c

by the same factor will leave the product intact. Therefore, our

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
23

SOF-US-HBK-OP10-2008
Rev. A

solutions for C
t

and g
c

are not unique. To remove this inherent degeneracy, it is practical
to enforce a normalizing condition on the gains, such that the mean gain µ(g

c

) = 1,
by construct. CRUSH uses a robust mean measure for gain normalization to produce
reasonable comparisons under various pathologies, such as when most gains are zero, or
when a few gains are very large compared to the others.

Once again, the maximum-likelihood estimate shown here can be replaced by other statis-
tical measures (such as a weighted median), without changing the essence.

3.2.5 Noise Weighting

Once we model out the dominant signal components, such that the residuals are starting
to approach a reasonable level of noise, we can turn our attention to determining proper
noise weights. In its simplest form, we can determine the weights based on the mean
observed variance of the residuals, normalized by the remaining degrees of freedom in the
data:

w
c

= ⌘
c

N(t),c � P
cP

t

w
t

R2
ct

where N(t),c is the number of unflagged data points (time samples) for channel c, and P
c

is
the total number of parameters derived from channel c. The scalar value ⌘

c

is the overall
spectral filter pass correction for channel c (see section 3.2.7), which is 1 if the data was
not spectrally filtered, and 0 if the data was maximally filtered (i.e. all information is
removed). Thus typical ⌘

c

values will range between 0 and 1 for rejection filters, or can be
greater than 1 for enhancing filters. We determine time-dependent weights as:

w
t

=
N(c),t � P

tP
c

w
c

R2
ct

Similar to the above, here N(c),t is the number of unflagged channel samples in frame t,
while P

t

is the total number of parameters derived from frame t. Once again, it is practical
to enforce a normalizing condition of setting the mean time weight to unity, i.e. µ(w

t

) = 1.
This way, the channel weights w

c

have natural physical weight units, corresponding to
w
c

= 1/�2
c

.

The total number of parameters derived from each channel, and frame, are simply the sum,
over all model parameters m, of all the parameter dependencies p

ct

we calculated for them.
That is,

P
c

=
X

m

X

t

p(m),ct

and
P
t

=
X

m

X

c

p(m),ct

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
24

SOF-US-HBK-OP10-2008
Rev. A

Getting these lost-degrees-of-freedom measures right is critical for the stability of the so-
lutions in an iterated framework. Even slight biases in p

ct

can grow exponentially with
iterations, leading to divergent solutions, which may manifest as over-flagging or as extreme
mapping artifacts.

Of course, one may estimate weights in di↵erent ways, such as based on the median absolute
deviation (robust weights), or based on the deviation of di↵erences between nearby samples
(di↵erential weights). As they all behave the same for white noise, there is really no
significant di↵erence between them. CRUSH does, optionally, o↵er those di↵erent (but
comparable) methods of weight estimation.

3.2.6 Despiking

After deriving fair noise weights, we can try to identify outliers in the data (glitches and
spikes) and flag them for further analysis. Despiking is a standard procedure that need not
be discussed here in detail. CRUSH o↵ers a few variants of the basic method, depending
on whether it looks for absolute deviations, di↵erential deviations between nearby data, or
spikes at di↵erent resolutions (multires) at once.

3.2.7 Spectral Conditioning

Ideally, detectors would have featureless white noise spectra (at least after the 1/f noise is
treated by the drift removal). In practice, that is rarely the case. Spectral features are bad
because (a) they produce mapping features/artifacts (such as “striping”), and because (b)
they introduce a covariant noise term between map points that is not easily represented
by the output. It is therefore desirable to “whiten” the residual noise whenever possible,
to mitigate both these e↵ects.

Noise whitening starts with measuring the e↵ective noise spectrum in a temporal window,
significantly shorter than the integration on which it is measured. In CRUSH, the tempo-
ral window is designed to match the 1/f stability timescale T chosen for the drift removal,
since the drift removal will wipe out all features on longer timescales. With the use of such
a spectral window, we may derive a lower-resolution averaged power-spectrum for each
channel. CRUSH then identifies the white noise level, either as the mean (RMS) scalar
amplitude over a specified range of frequencies, or automatically, over an appropriate fre-
quency range occupied by the point-source signal as a result of the scanning motion.

Then, CRUSH will look for significant outliers in each spectral bin, above a specified level
(and optimally below a critical level too), and create a real-valued spectral filter profile �

cf

for each channel c and frequency bin f to correct these deviations.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
25

SOF-US-HBK-OP10-2008
Rev. A

There are other filters that can be applied also, such as notch filters, or a motion filter
to reject responses synchronous to the dominant telescope motion. In the end, every one
of these filters is represented by an appropriate scalar filter profile �

cf

, so the discussion
remains unchanged.

Once a filter profile is determined, we apply the filter by first calculating a rejected sig-
nal:

%
ct

= F�1[(1� �
cf

)R̂
cf

]

where R̂
cf

is the Fourier transform of R
ct

, using the weighting function provided by w
t

,
and F�1 denotes the inverse Fourier Transform from the spectral domain back into the
timestream. The rejected signals are removed from the residuals as:

R
ct

! R
ct

� %
ct

The overall filter pass ⌘
c

for channel c, can be calculated as:

⌘
c

=

P
f

�2
cf

N
f

where N
f

is the number of spectral bins in the profile �
cf

. The above is simply a measure of
the white-noise power fraction retained by the filter, which according to Parseval’s theorem,
is the same as the power fraction retained in the timestream, or the scaling of the observed
noise variances as a result of filtering.

3.2.8 Map Making

The mapping algorithm of CRUSH implements a nearest-pixel method, whereby each data
point is mapped entirely into the map pixel that falls nearest to the given detector channel
c, at a given time t. Distributing the flux to neighboring pixels would constitute smoothing,
and as such, it is better to smooth maps explicitly by a desired amount as a later processing
step. Here,

�S
xy

=

P
ct

M ct

xy

w
c

w
t

{
c

G
c

R
ct

P
ct

M ct

xy

w
c

w
t

{2
c

G2
c

where M ct

xy

associates each sample {c, t} uniquely with a map pixel {x, y}, and is e↵ectively
the transpose of the mapping function defined earlier. {

c

is the point-source filtering (pass)
fraction of the pipeline. It can be thought of as a single scalar version of the transfer
function. Its purpose is to measure how isolated point-source peaks respond to the various
reduction steps, and correct for it. When done correctly, point source peaks will always
stay perfectly cross-calibrated between di↵erent reductions, regardless of what reduction

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
26

SOF-US-HBK-OP10-2008
Rev. A

steps were used in each case. More generally, a reasonable quality of cross-calibration (to
within 10%) extends to compact and slightly extended sources (typically up to about half
of the field-of-view (FoV) in size). While corrections for more extended structures (� FoV)
are possible to a certain degree, they come at the price of steeply increasing noise at the
larger scales.

The map-making algorithm should skip over any data that is unsuitable for quality map-
making (such as too-fast scanning that may smear a source). For formal treatment, we can
just assume that Mxy

ct

= 0 for any troublesome data.

Calculating the precise dependence of each map point S
xy

on the timestream data R
ct

is computationally costly to the extreme. Instead, CRUSH gets by with the approxima-
tion:

p
ct

⇡ N
xy

· w
tP

t

w
t

· w
c

{2
c

G
cP

c

w
c

{2
c

G2
c

This approximation is good as long as most map points are covered with a representative
collection of pixels, and as long as the pixel sensitivities are more or less uniformly dis-
tributed over the field of view. So far, the inexact nature of this approximation has not
produced divergent behavior with any of the dozen or more instruments that CRUSH is
being used with. Its inaccuracy is of no grave concern as a result.

We can also calculate the flux uncertainty in the map �
xy

at each point {x, y} as:

�2
xy

= 1/
X

ct

M ct

xy

w
c

w
t

{2
c

G2
c

Source models are first derived from each input scan separately. These may be despiked
and filtered, if necessary, before added to the global increment with an appropriate noise
weight (based on the observed map noise) if source weighting is desired.

Once the global increment is complete, we can add it to the prior source model Sr(0)
xy

and
subject it to further conditioning, especially in the intermediate iterations. Conditioning
operations may include smoothing, spatial filtering, redundancy flagging, noise or exposure
clipping, signal-to-noise blanking, or explicit source masking. Once the model is processed

into a finalized S0
xy

, we synchronize the incremental change �S0
xy

= S0
xy

� S
r(0)
xy

to the
residuals:

R
ct

! R
ct

�Mxy

ct

(�G
c

Sr(0)
xy

+G
c

�S0
xy

)

Note, again, that �S0
xy

6= �S
xy

. That is, the incremental change in the conditioned source
model is not the same as the raw increment derived above. Also, since the source gains
G

c

may have changed since the last source model update, we must also re-synchronize the

prior source model S(0)
xy

with the incremental source gain changes �G
c

(first term inside the
brackets).

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
27

SOF-US-HBK-OP10-2008
Rev. A

Typically, CRUSH operates under the assumption that the point-source gains G
c

of the
detectors are closely related to the observed sky-noise gains g

c

derived from the correlated
noise for all channels. Specifically, CRUSH treats the point-source gains as the prod-
uct:

G
c

= "
c

g
c

g
s

e�⌧

where "
c

is the point-source coupling e�ciency. It measures the ratio of point-source gains
to sky-noise gains (or extended source gains). Generally, CRUSH will assume "

c

= 1, unless
these values are measured and loaded during the scan validation sequence. Optionally,
CRUSH can also derive "

c

from the observed response to a source structure, provided the
scan pattern is su�cient to move significant source flux over all detectors. The source gains
also include a correction for atmospheric attenuation, for an optical depth ⌧ , in-band and
in the line of sight. Finally, a gain term g

s

for each input scan may be used as a calibration
scaling/correction on a per-scan basis.

3.2.9 Point-Source Flux Corrections

We mentioned point-source corrections in the section above; here, we explain how these
are calculated. First, consider drift removal. Its e↵ect on point source fluxes is a reduction
by a factor:

{
D,c

⇡ 1� ⌧
pnt

T

In terms of the 1/f drift removal time constant T and the typical point-source crossing
time ⌧

pnt

. Clearly, the e↵ect of 1/f drift removal is smaller the faster one scans across the
source, and becomes negligible when ⌧

pnt

⌧ T .

The e↵ect of correlated-noise removal, over some group of channels of mode i, is a little
more complex. It is calculated as:

{(i),c = 1� 1

N(i),t
(P(i),c +

X

k

⌦
ck

P(i),k)

where ⌦
ck

is the overlap between channels c and k. That is, ⌦
ck

is the fraction of the point
source peak measured by channel c when the source is centered on channel k. N(i),t is the
number of correlated noise-samples that have been derived for the given mode (usually the
same as the number of time samples in the analysis). The correlated model’s dependence
on channel c is:

P(i),c =
X

t

p(i),ct

Finally, the point-source filter correction due to spectral filtering is calculated based on the
average point-source spectrum produced by the scanning. Gaussian source profiles with

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
28

SOF-US-HBK-OP10-2008
Rev. A

spatial spread �
x

⇡ FWHM/2.35 produce a typical temporal spread �
t

⇡ �
x

/v̄, in terms
of the mean scanning speed v̄. In frequency space, this translates to a Gaussian frequency
spread of �

f

= (2⇡�
t

)�1, and thus a point-source frequency profile of:

f

⇡ e�f

2
/(2�2

f)

More generally,
f

may be complex-valued (asymmetric beam). Accordingly, the point-
source filter correction due to filtering with �

f

is generally:

{
�,c

⇡

P
f

Re(�
f

f

�
f

)

P
f

Re(
f

)

The compound point source filtering e↵ect from m model components is the product of
the individual model corrections, i.e.:

{
c

=
Y

m

{(m),c

This concludes the discussion of the principal reduction algorithms of CRUSH for HAWC
Scan mode data. For more information, see section 3.3.

3.2.10 CRUSH output

Since the CRUSH algorithms are iterative, there are no well-defined intermediate products
that may be written to disk. For Scan mode data, the pipeline takes as input a set of raw
Level 0 HAWC FITS files, described in section 3.1.1, and writes as output a single FITS file
containing an image of the source map, and several other extensions. The primary HDU in
the output file contains the flux image (EXTNAME = SIGNAL) in units of Jy/pixel. The
first extension (EXTNAME = EXPOSURE) contains an image of the nominal exposure
time in seconds at each point in the map. The second extension (EXTNAME = NOISE)
holds the error image corresponding to the flux map, and the third extension (EXTNAME
= S/N) is the signal-to-noise ratio of the flux to the error image. The fourth and further
extensions contain binary tables of data, one for each input scan.

3.3 Other Resources

For more information on the code or algorithms used in the HAWC DRP or the CRUSH
pipelines, see the following documents:

DRP:

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
29

SOF-US-HBK-OP10-2008
Rev. A

• Far-infrared polarimetry analysis: Hildebrand et. al. 2000 PASP, 112, 1215

• DRP infrastructure and image viewer: Berthoud, M. 2013 ADASS XXII, 475, 193

CRUSH:

• CRUSH paper: Kovács, A. 2008, Proc. SPIE, 7020, 45

• CRUSH thesis: Kovács, A. 2006, PhD Thesis, Caltech

• Online documentation: http://www.submm.caltech.edu/
~

sharc/crush

4 Data Products

4.1 File names

Output files from the HAWC pipeline are named according to the convention:

FILENAME = F[flight] HA [mode] [aorid] [spectel] [type] [fn1[-fn2]].fits

where flight is the SOFIA flight number, HA indicates the instrument (HAWC+), andmode
is either IMA for imaging observations, POL for polarization observations, or CAL for di-
agnostic data. The aorid indicates the SOFIA program and observation number, spectel
indicates the filter/band and the HWP setting. The type is a three-letter identifier for the
pipeline product type, and fn1 and fn2 are the first and last raw file numbers that were com-
bined to produce the output product. For example, a polarization vector data product with
AOR-ID 81 0131 04 derived from files 5 to 6 of flight 295, taken in Band A with HWP in the
A position would have the filename F0295 HA POL 81013104 HAWAHWPA VEC 005-
006.fits. See the tables below for a list of all possible values for the three-letter product
type.

4.2 Data format

Most HAWC data is stored in FITS files, conforming to the FITS standard (Pence et al.
2010). Each FITS file contains a primary Header Data Unit (HDU) which may contain
the most appropriate image data for that particular data reduction level. Most files have
additional data stored in HDU image or table extensions. All keywords describing the file
are in the header of the primary HDU. Each HDU has its own header and is identified by
the EXTNAME header keyword. The algorithm descriptions, above, give more information
about the content of each extension.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
30

http://iopscience.iop.org/article/10.1086/316613
http://adsabs.harvard.edu/abs/2013ASPC..475..193B
http://adsabs.harvard.edu/abs/2008SPIE.7020E..45K
http://adsabs.harvard.edu/abs/2006PhDT........28K
http://www.submm.caltech.edu/~sharc/crush

SOF-US-HBK-OP10-2008
Rev. A

4.3 Pipeline products

The following tables list all intermediate and final products that may be generated by the
HAWC pipeline, in the order in which they are produced for each mode. The product type
is stored in the primary header, under the keyword PRODTYPE. By default, for Nod-Pol
mode, the shift, wcs, calibrate, and polvec products are saved. For Chop-Nod mode, the
shift, wcs, merge, and calibrate products are saved. For Scan mode, only the crush product
is produced or saved.

Table 1: Nod-Pol mode intermediate and final pipeline data products

Step Description PRODTYPE PROCSTAT Identifier Saved
Make Flat Flat generated from Int.Cal file obsflat LEVEL 2 OFT Y
Demodulate Chops subtracted demod LEVEL 1 DMD Y
Flat Correct Flat field correction applied flat LEVEL 2 FLA N
Align Arrays R array shifted to T array shift LEVEL 2 SFT N
Split Images Data split by nod, HWP split LEVEL 2 SPL N

Combine Images Chop cycles combined combine LEVEL 2 CMB N
Subtract Beams Nod beams subtracted nodpolsub LEVEL 2 NPS N
Compute Stokes Stokes parameters calculated stokes LEVEL 2 STK N
Update WCS WCS added to header wcs LEVEL 2 WCS Y

Correct Opacity Corrected for atmospheric opacity opacitymodel LEVEL 2 OPC N
Subtract Background Residual background removed bgsubtract LEVEL 2 BGS N

Subtract IP Instrumental polarization removed ip LEVEL 2 IPS N
Rotate Coordinates Polarization angle corrected to sky rotate LEVEL 2 ROT N

Merge Images Dithers merged to single map merge LEVEL 2 MRG N
Calibrate Flux Flux calibrated to physical units calibrate LEVEL 3 CAL Y

Compute Vectors Polarization vectors calculated polvec LEVEL 4 VEC Y

Table 2: Chop-Nod mode intermediate and final pipeline data products

Step Description PRODTYPE PROCSTAT Identifier Saved
Make Flat Flat generated from Int.Cal file obsflat LEVEL 2 OFT Y
Demodulate Chops subtracted demod LEVEL 1 DMD Y
Flat Correct Flat field correction applied flat LEVEL 2 FLA N
Align Arrays R array shifted to T array shift LEVEL 2 SFT Y
Split Images Data split by nod, HWP split LEVEL 2 SPL N

Combine Images Chop cycles combined combine LEVEL 2 CMB N
Subtract Beams Nod beams subtracted nodpolsub LEVEL 2 NPS N
Compute Stokes Stokes parameters calculated stokes LEVEL 2 STK N
Update WCS WCS added to header wcs LEVEL 2 WCS Y

Correct Opacity Corrected for atmospheric opacity opacitymodel LEVEL 2 OPC N
Subtract Background Residual background removed bgsubtract LEVEL 2 BGS N

Merge Images Dithers merged to single map merge LEVEL 2 MRG N
Calibrate Flux Flux calibrated to physical units calibrate LEVEL 3 CAL Y

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
31

SOF-US-HBK-OP10-2008
Rev. A

Table 3: Scan mode final pipeline data product

Step Description PRODTYPE PROCSTAT Identifier Saved
CRUSH Source model derived iteratively with CRUSH crush LEVEL 3 CRH Y

5 Grouping Level 0 Data for Processing

In order for the pipeline to successfully reduce a group of HAWC+ data together, all input
data must share a common instrument configuration and observation mode, as well as
target and filter band and HWP setting. These requirements translate into a set of FITS
header keywords that must match in order for a set of data to be grouped together. These
keyword requirements are summarized in the table below, for imaging and polarimetry
data.

Table 4: Grouping Criteria for Imaging and Polarimetry Modes
Mode Keyword Data Type Match Criterion
Both OBSTYPE string exact
Both OBJECT string exact
Both INSTCFG string exact
Both INSTMODE string exact
Both SPECTEL1 string exact
Both SPECTEL2 string exact
Both PLANID string exact

Imaging only SCNPATT string exact
Polarimetry only NHWP float exact

6 Configuration and Execution

6.1 Installation

The HAWC pipeline is written in Python with additional modules in other languages, in-
cluding C and Java. The pipeline is platform independent and has been tested on Windows,
Linux, and Mac operating systems.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
32

SOF-US-HBK-OP10-2008
Rev. A

6.1.1 External Requirements

To run the pipeline for any mode from the DRP interface, Python (preferably 2.7 or later)
is required as well as the following packages: numpy, scipy, matplotlib/pylab, astropy,
logging, and configobj. Some lab and diagnostic pipeline steps may also require the pIDLy
library and IDL, but the default science reductions do not. The DRP includes some C
libraries that require gcc with the omp.h library to compile; gcc version 4.9 or higher is
recommended.

To run the pipeline on Scan mode data with CRUSH, Java v1.7.0 or higher is also required.
It can be installed, if necessary, from java.com, for example.

6.1.2 Source Code Installation

The source code for the DRP pipeline maintained by the SOFIA Data Processing Systems
(DPS) team can be obtained directly from the hawc git repository there. This version
contains all needed configuration files, auxiliary files, and Python, C, and Java code to
run the pipeline on HAWC data in any observation mode. CRUSH is also available as a
standalone package, and may be downloaded separately if desired, via the CRUSH website
or its SourceForge page.

After obtaining the source code, the C libraries used by the DRP must be compiled. To
do so, run

make

from the hawc/pipeline/src/lib directory.

To run the Python code, the PYTHONPATH environment variable must be set to include
the DRP source folder. To use default configurations and auxiliary files, it is also rec-
ommended to set a DPS HAWCPIPE environment variable to include the top-level hawc
directory. For example, from bash, set:

export DPS_HAWCPIPE =/path/to/hawc
export PYTHONPATH=$DPS_HAWCPIPE/pipeline/src

For a shortcut to the command-line version of the pipeline on UNIX/Linux systems, you
may also wish to set an alias as follows:

alias hawcpipe =" python $DPS_HAWCPIPE/pipeline/src/dcs/dcspipe.py"

This shortcut will be used in the rest of this document when referring to the command-line
interface.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
33

http://www.java.com
http://www.submm.caltech.edu/~sharc/crush
https://sourceforge.net/projects/crush-software/

SOF-US-HBK-OP10-2008
Rev. A

6.2 Configuration

The DRP pipeline requires a valid and complete configuration file to run. Configuration
files are written in plain text, in a format readable by the configobj Python library. These
files are divided into sections, specified by brackets (e.g. [section]), each of which may
contain keyword-value pairs or subsections (e.g. [[subsection]]). The HAWC configuration
file must contain the following sections:

• General pipeline configuration, including the list of DRP modules to use

• Data configuration, including specifications for input and output file names and for-
mats, and specifications for metadata handling

• Pipeline mode definitions for each supported instrument mode, including the FITS
keywords that define the mode and the list of steps to run

• Pipeline step parameter definitions (one step for each pipeline step defined)

In the DPS environment, the pipeline is usually run with a default configuration file
(hawc/pipeline/config/pipeconf dcs.txt), which defines all standard reduction steps and
default parameters. It may be overridden with date-specific default values, defined in
(hawc/pipeline/config/overrides/), or with user-defined parameters. Override configura-
tion files specified to hawcpipe may contain any subset of the values in the full configuration
file. See Appendix B for examples of override configuration files as well as the full default
file.

The CRUSH pipeline, run as a single pipeline step for Scan mode data, also has its own
separate set of configuration files. These files are stored with the CRUSH distribution
included with the HAWC pipeline, in hawc/crush. They are read from this sub-directory
in the order specified below.

Upon launch, CRUSH will invoke the default configuration files (default.cfg) in the following
order:

1. Global defaults from crush/default.cfg

2. Global user overrides from ⇠/.crush2/default.cfg

3. Instrument overrides from crush/hawc+/default.cfg

4. Instrument user overrides from ⇠/.crush2/hawc+/default.cfg

Any configuration file may invoke further (nested) configurations, which are located and
loaded in the same order as above. For example, hawc+/default.cfg inside CRUSH invokes
sofia/default.cfg first, which contains settings for SOFIA instruments in general, which are
not HAWC+ specific.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
34

SOF-US-HBK-OP10-2008
Rev. A

There are also modified configurations for “bright”, “faint”, or “deep” sources, when one
of these flags is used while invoking crush. For example:

crush hawc+ -faint ...

will invoke faint mode reduction, by parsing faint.cfg from the above locations, after de-
fault.cfg was parsed. Similarly, there can be bright.cfg and deep.cfg files specifying modified
configurations for bright and deep modes. CRUSH ships with reasonably fine-tuned ver-
sions of all configurations to provide quasi-optimal results out of the box.

Users are discouraged from modifying the configuration files included in the CRUSH dis-
tribution directly. Instead, they should add relevant entries in their own user-specific
configuration files under ⇠/.crush2/ (for global settings) and ⇠/.crush2/hawc+/ (for
HAWC+ specific settings). This way, their configuration changes will survive updates
to CRUSH.

A simple guide to the configuration syntax is found in README.syntax (inside the crush
distribution and online). Common configuration options for HAWC+ are discussed in
hawc+/README (also included in the distribution, and available online). Yet more use-
ful options are covered by the main README (included in the distribution and online).
Finally, a complete list of all available options and their descriptions is to be found in
the GLOSSARY (inside the distribution and online). See Appendix B for an example of
current CRUSH configuration files.

When CRUSH is called from the DRP, it invokes CRUSH command-line options via a pa-
rameter defined in its configuration file. Most parameters in the CRUSH configuration files
can be overridden from DRP via this method. For example, the faint mode configuration
can be invoked by adding it to the options parameter in the [crush] section of the DRP
configuration file, after any other standard options:

[crush]
options = 'hawc+ -drp -unit=Jy/pixel -blacklist=smooth -faint '

6.3 Input Data

The HAWC pipeline takes as input raw HAWC data files, which contain binary tables of
instrument readouts and metadata. The FITS headers contain data acquisition and obser-
vation parameters and, combined with the pipeline configuration files and other auxiliary
files on disk, comprise the information necessary to complete all steps of the data reduc-
tion process. Some critical keywords are required to be present in the raw data in order
to perform a successful grouping, reduction, and ingestion into the SOFIA archive. These
are defined in the DRP pipeline in a configuration file that describes the allowed values for
each keyword in the configobj format (see Appendix C).

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
35

SOF-US-HBK-OP10-2008
Rev. A

It is assumed that the input data have been successfully grouped before beginning reduc-
tion: the pipeline considers all input files in a reduction to be science files that are part
of a single homogeneous reduction group, to be reduced together with the same parame-
ters.

6.3.1 Auxiliary Files

In order to complete a standard reduction, the pipeline requires a number of files to be on
disk, with locations specified in the DRP configuration file. Current default files described
in the default configuration are stored along with the code, typically in the hawc/pipeline/-
data directory. See below for a table of all commonly used types of auxiliary files.

Table 5: Auxiliary files used by DRP reductions for Chop-Nod and Nod-Pol data

Auxiliary File File Type Pipe Step Comments
Phase FITS Demodulate Contains phase delay in seconds for each pixel
Flat FITS Flat Correct Contains normalized flat field image and bad pixel mask, one per band

Response ASCII Opacity Correct Contains instrumental response coe�cients by altitude, ZA

The phase files used in the Demodulate step should be in FITS format, with two HDUs
containing phase information for the R and T arrays, respectively. The phases are stored
as images that specify the timing delay, in seconds, for each pixel.

The flat files used in the Flat Correct step are also in FITS format. They should have
four image extensions: R Array Gain, T Array Gain, R Bad Pixel Mask, and T Bad
Pixel Mask. The image in each extension should match the dimensions of the R and T
arrays in the demodulated data (currently 64 x 41 pixels). The Gain images should contain
multiplicative floating-point flat correction factors, normalized to a median of 1.0, to be
applied to the demodulated flux. The Bad Pixel Mask images should be integer arrays,
with value 0 (good), 1 (bad in R array), or 2 (bad in T array). Bad pixels, corresponding
to those marked 1 or 2 in the mask extensions, should be set to NaN in the flat images. At
a minimum, the primary FITS header for the flat file should contain the SPECTEL1 and
SPECTEL2 keywords, for matching the flat band to the input demodulated files.

The instrumental response coe�cients are stored in ASCII text files, with at least four
white-space delimited columns as follows: filter wavelength, filter name, response reference
value, and fit coe�cient constant term. Any remaining columns are further polynomial
terms in the response fit. The independent variable in the polynomial fit is indicated by
the response filename: if it contains airmass, the independent variable is zenith angle (ZA);
if alt, the independent variable is altitude in thousands of feet; if pwv, the independent
variable is precipitable water vapor, in µm. The reference values for altitude, ZA, and
PWV are listed in the headers of the text files, in comment lines preceded with #.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
36

SOF-US-HBK-OP10-2008
Rev. A

6.4 Automatic Mode Execution

The DPS pipeline infrastructure runs the pipeline on previously-defined reduction groups
as a fully-automatic black box. To do so, it creates an input manifest (infiles.txt) that
contains relative paths to the input files (one per line), and prepends the total number of
input files to the top of the manifest. The pipeline modes and steps to run are defined
in the pipeconf dcs.txt configuration file included with the software installation, and the
command-line interface to the pipeline is run as:

hawcpipe infiles.txt

The command-line interface will read in the specified input files, use their headers to
determine the observation mode, and read the configuration file to determine the steps and
parameters to run and the intermediate files to save. Output files are initially written to
the input data location, then are moved to the current reduction directory. After reduction
is complete, the script will generate an output manifest (outfiles.txt) containing the number
of output files, and the relative paths to their locations.

6.5 Manual Mode Execution

This pipeline release does not include an integrated graphical user interface (GUI) for man-
ual execution. A number of di↵erent interfaces to the pipeline algorithms, both command-
line and GUI based, have been developed separately and are briefly described in Appendix
A.

Manual mode execution for this pipeline entails running the hawcpipe script from the
command-line with manually specified input files and/or configuration files. From this
interface, any combination of pipeline steps and parameters may be specified. The script
may be invoked directly on a file or set of files without creating an input manifest, as, for
example:

hawcpipe 2016 -12 -16 _HA_F360_082_POL_unk_HAWA_HWPA_RAW.fits

It may also start from any intermediate file previously generated by the pipeline as, for
example:

hawcpipe *WCS*.fits

to reduce a set of wcs data products from the next defined step to the end of the re-
duction recipe. To override any part of the default configuration file, specify an override
configuration file on the command line with the -c option, e.g.:

hawcpipe File1.fits -c manual_config.txt

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
37

SOF-US-HBK-OP10-2008
Rev. A

It is also possible to redirect the output to a di↵erent directory with the -d option, to
rename the output manifest (-o) or log file (-l), or to force the pipeline to use a di↵erent
mode than the standard science reduction (-m). The latter may be useful for running
additional diagnostic steps included in the pipeline package, but not generally run for
science reductions.

6.6 Important Parameters

The following sections list some useful parameters for HAWC reductions. DRP parameters
may be set directly as key/value pairs in pipeline configuration files; CRUSH parameters
are generally added to the options parameter string in pipeline configuration files.

6.6.1 DRP parameters

Below are the most important parameters for Nod-Pol or Chop-Nod pipeline steps, as
named in the configuration file, in the order they are typically run. This list is not ex-
haustive; see the HAWC+ DRP Developer’s Manual or the code itself for more informa-
tion.

• checkhead

� abort : Set to False to allow the pipeline to continue despite incorrect header
keywords. Default is True.

• prepare

� traceshift : Set to a non-zero value to shift the data by this many samples relative
to the metadata. Default is zero (no shift).

� multiplyminusone: Set to True to multiply the raw data by -1, to correct for a
negative Stokes I image. Default is False.

• demod

� phasefile: Set to a FITS file for per-pixel phase shifts, or to a floating point
number to apply the same phase shift to all pixels. Default is typically a file in
hawc/pipeline/data/phasefiles.

� track tol : If non-negative, will use this number as the tracking tolerance in
arcseconds. Samples with tracking deviation larger than this number will be
rejected. If set to ‘beam’, the beam size for the filter band will be used. Set to
-1 to turn o↵. Default is beam.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
38

SOF-US-HBK-OP10-2008
Rev. A

� boxfilter : Time constant for filter applied to data. 0 means no filter, -1 means
use 1/CHPFREQ for time constant. Default is -1.

• flat

� flatfile: Set to ‘search’ to detect best available file in flatfolder. Set to a FITS
file path to override. Default is search.

� fitkeys: Header keywords to match in searching for files in flatfolder. Default is
“‘SPECTEL1’, ‘SPECTEL2’”.

� flatfolder : Directory to search for matching flat files. Default is typically
hawc/pipeline/data/flats.

• split

� rtarrays: Set to ‘RT’ to use both R and T arrays, ‘R’ for R only, or ‘T’ for T
only. Default is ‘RT’.

• combine

� sigma: Reject outliers more than this many sigma from the mean. Default is
3.0.

� covflag : Set to True to calculate covariances. Default is False.

• stokes

� erri : Method for inflating errors in I from standard deviation. Can be median,
mean, or none. Default is median.

� widow : Set to True to attempt to fix widow pixel flux from nearby pixels.
Default is False.

� removeR1stokesi : Set to False to keep the R1 array in the Stokes I image.
Default is True.

• wcs

� o↵sibs x : O↵set in pixels along X between SIBS X and actual target position
on array. Should be a comma-separated list of 5 numbers, one for each band;
for example, ‘-0.9, 0.0, 1.1, 0.0, 1.1’. Default may vary over time.

� o↵sibs y : O↵set in pixels along Y between SIBS Y and actual target position
on array, as for o↵sibs x. Default may vary over time.

• bgsubtract

� bgslope: Number of iterations to run with slope term. If zero, slope will not be
fit (i.e. residual gains will not be corrected). Default is 0.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
39

SOF-US-HBK-OP10-2008
Rev. A

� bgo↵set : Number of iterations to run with o↵set term. If zero, o↵set will not be
fit (i.e. residual background will not be removed). Default is 10.

• ip

� qinst : Fractional instrumental polarization in q. Should be a comma-separated
list of 5 numbers, one for each band; for example, ‘-0.01191, 0.0, -0.01787, -
0.00055, -0.01057’. Default may vary over time.

� uinst : Fractional instrumental polarization in u, as for qinst.

� qtel : Fractional telescope polarization in q. Should be a comma-separated list
of 5 numbers, one for each band; for example, ‘0.0, 0.0, 0.0, 0.0, 0.0’. Default
may vary over time.

� utel : Fractional telescope polarization in u, as for qtel.

• rotate

� gridangle: Detector angle o↵set, in degrees. Should be a comma-separated list
of 5 numbers, one for each band; for example, ‘-78.69, 0.0, -93.28, 48.42, 130.62’.
Default may vary over time.

• merge

� cdelt : Pixel size in arcseconds of output map, one number per band. Default is
‘2.55, 4.0, 4.0, 6.8, 9.1’, to match detector pixel scale.

� fwhm: FWHM in arcseconds of Gaussian smoothing kernel, by band. Make
larger for more smoothing. Default is ‘2.55, 4.0, 4.0, 6.8, 9.1’, for minimal
smoothing.

� radius : Integration radius for input pixels, by band. Set larger to consider more
pixels when calculating output map. Default is ‘9.4,11.6,15.6,28.0,38.0’.

� covflag : Set to True to use covariance image for weighting. Default is False.

� errflag : Set to True to use error image for weighting. Default is True.

� widowstokesi : Set to True to use widow pixels to compute the Stokes I map.
Default is True.

� minnpix : Set to a number greater than 0 to exclude pixels with fewer than this
number of input pixels. May be useful to remove bad borders. Default is 0.0.

• calibrate

� fac: Multiplicative calibration factor in Jy/pixel/counts. Should be a comma-
separated list of 5 numbers, one for each band; for example, ‘0.0454, 0.038,

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
40

SOF-US-HBK-OP10-2008
Rev. A

0.0345, 0.0291, 0.0419’. Default may vary over time.

• region

� skip: Set to a number i to plot vectors every ith pixel. Default is 1.

� debias: Set to True to use debiased polarizations. Default is True.

� mini : Do not plot vectors from pixels with flux less than this fraction of peak
flux. Default is 0.

� minp: Do not plot vectors with percent polarization less than this value. Default
is 0.3%.

� length: Scale factor for polarization vectors, in pixels. Default is 10 (i.e. a 10%
polarization vector is the length of one pixel).

� sigma: Do not plot vectors with p/�
p

less than this value. Default is 5.0.

6.6.2 CRUSH parameters

Below are some commonly used top-level parameters for CRUSH reductions of HAWC+
data with DRP. For more information, or an exhaustive list of parameters, see the CRUSH
documentation online or in the crush distribution.

• -bright / -faint / -deep: a non-default brightness setting for the object (a default
brightness is assumed if none of these are set). -deep is based on -faint but it also
spatially filters maps to discard large-scale structures above a few beam-widths, to
gain maximum sensitivity for very faint point sources.

• -extended: If an extended object (� FoV) is observed, and the large scale structure
is of interest. The trade-o↵ in retaining more large-scale structures is higher noise.

• -source.sign=X: ‘+’, ‘-’ or ‘0’ to bias for positive or negative sources, or no bias.
The bias helps get rid of filter bowls surrounding bright features. It is recommended
to leave it unchanged from the default (‘+’) unless you expect to see absorption
features.

• -ecliptic / -galactic / -supergalactic / -horizontal / -focalplane: To produce
maps in other than the default equatorial coordinates. Note that ‘horizontal’ actually
produces maps in TARF (which for HAWC+ is the same as SIRF) disguised as
horizontal maps (Azimuth / Elevation axis labels that correspond to tXEL / tEL).

• -sourcesize=X: Use together with -extended to specify a typical source diameter
in arcsec.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
41

SOF-US-HBK-OP10-2008
Rev. A

• -tau=X, -tau.pwv=X: Specify an in-band zenith tau or water-vapor level for calcu-
lating extinction correction. Default for the DPS environment is -tau=atran, which
specifies that an atmospheric model based on ATRAN should be used.

• -scale=X: Apply a calibration scaling factor (X = F
true

/F
obs

)

• -unit=X: Define output units. Options are Jy/pixel, Jy/beam, counts/beam, etc.
Default for the DPS environment is currently Jy/pixel.

7 Data Quality Assessment

After the pipeline has been run on a set of input data, the output products should be
checked to ensure that the data has been properly reduced. Data quality and quirks
can vary widely in individual observations, but the following general guideline gives some
strategies for approaching quality assessment for HAWC+ data.

For any mode:

• Check the instrument scientist’s log for any data that is known to be of poor or
questionable quality.

• Make sure that any diagnostic files are excluded from reductions. These typically
have CALMODE=SKY DIP.

• Check the output to the log file (usually called hawc[date/time].log), written to the
same directory as the output files. Look for messages marked ERROR or WARN-
ING. The log will also list every parameter used in DRP steps, which may help
disambiguate the parameters as actually-run for the pipeline.

• Check that the expected files were written to disk. There should be, at a minimum,
a WCS file and a VEC file for Nod-Pol data, and a CRH file for Scan data.

For Nod-Pol mode:

• Display all WCS files together. Verify that no one file looks unreasonably noisy
compared to the others, and that any visible sources appear in the same locations,
according to the world coordinate system in each file’s header. Particular WCS files
may need to be excluded, and the last steps of the pipeline re-run.

• Check the WCS files for persistent bad pixels or detector features. If present, the flat
field or bad pixel mask may need updating.

• Display the final VEC file. Verify that the mapping completed accurately, with no
unexpected or unusual artifacts. The error or covariance flags may need modification,
or the smoothing may need to be increased.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
42

SOF-US-HBK-OP10-2008
Rev. A

• Overlay the DS9 polarization vector file (*.reg) on the VEC file. Check for unusually
noisy vector maps (e.g. long vectors near the edges).

• For observations of flux standards, compare the total flux in the source, via aperture
photometry, to a known model. Flux calibration should be within 20%; if it is not,
the calibration factors may need to be adjusted, or some o↵-nominal data may need
to be excluded from the reduction.

• For observations of polarimetric standards, verify that the total polarization (Q/I
and U/I) is less than 0.3% in regions that should have zero total polarization. If it
is not, the instrumental polarization parameters may need adjusting.

For Scan mode:

• Check the log for warnings about scans that may have been excluded from reduction
or are of poor quality.

• Display the final CRH image. Check that no unusual artifacts appear (e.g. “worms”
caused by bad pixels that were not properly excluded from the scans).

• Check that the map is not unusually large and does not include patches disconnected
from the main image. These may be signs of poor tracking during the observation or
missing metadata in the input FITS tables.

• For observations of flux standards, compare the total flux in the source, via aperture
photometry, to a known model. Flux calibration should be within 20%; if it is not,
the calibration factors or the opacity correction may need to be adjusted.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
43

SOF-US-HBK-OP10-2008
Rev. A

A Appendix: Alternate Pipeline Execution Modes

A.1 DRP Command-Line Reduction

The DRP pipeline can be run from the (UNIX/Windows) command line without the DPS
wrapper as follows.

The pipeline can reduce multiple files at once and will use input file header keyword infor-
mation to select the appropriate pipe mode and the pipe steps to run. Alternatively, the
pipemode can be set as a command line argument. The pipeline is called as follows:

Usage:
python pipeline.py [-h] [-t] [--loglevel {DEBUG ,INFO ,WARN ,ERROR ,CRITICAL

}]
[--logfile LOGFILE] [--pipemode PIPEMODE]

[config] [inputfiles [inputfiles ...]]

Positional arguments:
config pipeline configuration file (default = pipeconf.

txt)
inputfiles input files pathname

Optional arguments:
-h, --help show this help message and exit
-t, --test runs the selftest of the pipeline
--loglevel {DEBUG ,INFO ,WARN ,ERROR ,CRITICAL}

log level (default = INFO)
--logfile LOGFILE logging file (default = none)
--pipemode PIPEMODE pipeline mode (default = none)

A full pipeline configuration file is required to run the pipeline.

It is also possible to run individual pipe steps directly from the command line. For exam-
ple:

Usage:
python stepfile.py [-h] [-t] [--loglevel {DEBUG ,INFO ,WARN ,ERROR ,CRITICAL

}]
[--logfile LOGFILE] [--config CONFIG]
[--Pipe Step specific arguments]
[inputfiles [inputfiles ...]]

Positional arguments:
inputfiles input files pathname

Optional arguments:
-h, --help show this help message and exit
-t, --test runs the selftest of this pipe step
--loglevel ={DEBUG ,INFO ,WARN ,ERROR ,CRITICAL}

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
44

SOF-US-HBK-OP10-2008
Rev. A

requested log level (default = INFO)
--logfile LOGFILE log file pathname (default = none)
--config=pipeconf.txt pipeline configuration file pathname (default =

none)
--Pipe Step specific arguments

The Pipe Step specific arguments are equal to the list of parameters for the pipe step.
They are the same parameters as are specified for that pipe step in the configuration file.
The config file is optional, as the steps have default parameters.

The following list of commands illustrates the simplest way to fully reduce HAWC files:

python pipeline.py pipeconf.txt file1.raw.fits file2.raw.fits

This process only stores the final result, unless save steps are listed under stepslist in the
configuration file.

The following commands illustrate how to reduce the data using the pipe steps directly:

python stepprepare.py file1.raw.fits file2.raw.fits
python stepdemod.py file1.pre.fits file2.pre.fits
python stepflat.py file1.dmd.fits file2.dmd.fits
...

Each program saves the files that are used as input for the next step. Each of these single
step programs can have additional command-line arguments as described above.

A.2 DRP Interactive Python Reduction

You can use the Python interpreter to reduce a list of files. To do so, you need to create
a pipe object, assign a config file, and run it with the file list. The necessary commands
are:

Import the pipeline object
from drp.pipeline import PipeLine
Create the pipe object and set configuration
pipe = PipeLine(config = 'path/file/name/of/pipeconfig.txt ')
Run the pipeline
result = pipe(['data1.raw.fits ', 'data2.raw.fits '])
Save the result
result.save('output_filename.fits ')

To see log messages from the pipeline you might want to set up logging:

Import the logging library
import logging
Configure logging to print messages of level info and higher
logging.basicConfig(level = logging.INFO)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
45

SOF-US-HBK-OP10-2008
Rev. A

To run individual pipeline steps from the Python interpreter, you need to load the data
into a datafits object, then run the pipe step on it, then save the result. Assuming you
have set the logging and the path the code would look like this:

Import objects
from drp.datafits import DataFits
from drp.stepmystep import StepMyStep
Make a datafits object and load the data into it
inputdata = DataFits(config = '/path/to/pipeconfig.txt ')
inputdata.load('/path/to/data/file.fits ')
Make a pipe step object and run it on the data
mystep = StepMyStep ()
outputdata = mystep(inputdata)
Store the result
outputdata.save('/path/to/output/data/file.fits ')

A.3 Web Data View

The HAWC Web Viewer provides online access to reduced HAWC data products. This
viewer will be available to investigators on the SOFIA airplane and on the ground. See
Figure 6 for a screenshot illustrating the parts of Web Viewer.

The Data Viewer is the primary interface for the SI team to view and analyze HAWC data.
The screenshot above shows the elements of the interface.

Function Navigation: This panel provides access to the basic Web View functions:

• Date / AOR List: Displays a list of all current and past observations

• Data Viewer: Links to the data viewer.

• Pipeline Log: Displays the most recent messages in the pipeline log.

• Help / Manual: Links to the current version of the HAWC data reduction manual.

To open a new tab, just right click (or Alt click - Win, or Command click - Mac) on any
of these links.

Data Selection: These pull-down menus allow the user to select the data to view.

• Flight: Select a flight or test date.

• AOR: Select an AOR (observation) during the selected flight.

• File: Select a raw data file from the selected AOR.

• Pipe Step: Select a data reduction step to view.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
46

SOF-US-HBK-OP10-2008
Rev. A

Figure 6: Web Data View Screenshot

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
47

SOF-US-HBK-OP10-2008
Rev. A

The selections above identify an individual FITS file to view. The Download File and File
Info tools both refer to that FITS file.

• Display: Which HDU of the selected FITS file to look at. Header and tabular
information can also be selected here.

• Image Frame: If the viewed data contains an image cube, layers of that cube can be
selected here.

File Info: This field displays information from the FITS header of the selected file.

Image Tools: This dialog provides information about the image display and allows the
user to change display zoom, scale, and color. These options are only available if image
data is being displayed. The Zoom Display shows a zoomed-in image of the pixels around
the mouse cursor, mouse coordinates and cursor value are shown above.

Image Display: The image shows the image data. If the current image does not fit the
screen, vertical and horizontal scroll bars appear.

Problems and Fixes: If there are problems with the data viewer, reload the page or
reset your browser. Other errors can occur. For example, the data viewer may return an
error message from Apache. Usually the cause for that is an empty Flight/AOR folder
or a corrupted FITS file. Open a di↵erent date or a di↵erent AOR. Alternatively, remove
o↵ending files and folders on the web server. When the automatic data reduction is running
it is possible that certain Flight/AOR folders contain incompletely reduced observations;
in this case, wait until the reduction is complete and reload the page.

A.4 In-Flight Autoreduce

The automatic data reduction service reduces files independently during a SOFIA flight.
Source and target folder as well as other parameters are set in the autoreduce configuration
file (example: auto config sky.txt). The autoreduce also needs a regular pipeline config-
uration file (example: pipeconf sky.txt). Several instances of the autoreduce can be run
simultaneously, as long as they are not reducing the same files. Important: The output
data folder must already exist before starting the autoreduce.py script.

The autoreduction code folder and configuration are in the pipeline folder under hawcdr-
p/autoreduce. Setup:

• Edit the auto config sky.txt file for setting the inputpath and outputpath. Make sure
these folders exist.

• The autoreduce uses the pipeline config file such as pipeconf sky.txt.

• You can also set file selection criteria such as namein and namend.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
48

SOF-US-HBK-OP10-2008
Rev. A

To start the program, open a terminal and go through the following steps:

cd /path/with/hawcdrp/autoreduce/src
python autoreduce.py path/to/auto_config_here.txt

Then, the pipeline should be running and you should see new log messages in the log file
(usually under hawcdrp/autoreduce/logs).

To shutdown the pipeline, type exit in the pipe terminal. If that doesn’t work, look up
the UNIX process number by typing ps -A, then kill the pipeline process by typing kill
NNNNNN.

A.5 CRUSH Command Line Reduction

CRUSH is a pipeline within the pipeline responsible for reducing HAWC+ scan-mode
imaging data. Users are encouraged to run CRUSH from within the HAWC+ DRP, but
may also choose to run it as a separate tool. The native CRUSH interface may give more
flexible access to the full range of CRUSH reduction parameters, but may not produce
standardized SOFIA headers and output file names. This section discusses the installation
and basic use of CRUSH as a standalone tool.

A.5.1 Downloading and Installing CRUSH

Running CRUSH requires Java v1.7.0 or later.

CRUSH distribution packages (tarball, zip, and binary packages for RPM-based and De-
bian based Linux distros) are available from www.submm.caltech.edu/

~

sharc/crush/

download.html.

The ‘binary’ .rpm and .deb packages allow one-click, system-wide installation on Linux
platforms. The compressed archives (tarball and ZIP) allow both system-wide and unpriv-
ileged (user-directory) installations (Unix, Mac OS X, and Windows), and include the full
source code as well.

To install from a tarball (POSIX/UNIX, incl. Mac OS X), simply unpack it in the desired
location:

tar xzf crush -2.xx -x.tar.gz

and verify that it works:

cd crush
./crush

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
49

www.submm.caltech.edu/~sharc/crush/download.html
www.submm.caltech.edu/~sharc/crush/download.html

SOF-US-HBK-OP10-2008
Rev. A

The Linux binary packages (.rpm and .deb) install system-wide, by default. All crush
executables, and the related man pages, are available to all users, from any location on the
machine.

To create system-wide access to the crush executables when installing from a tarball, you
may wish to run install.sh (as root or with ‘sudo’) after unpacking crush. It will link the
executables to ‘/usr/bin’, and install the man pages. For example:

cd crush
sudo bash install.sh

You can check the success of the above optional step by typing:

man crush

If all is in order, you should see a basic description of the crush command-line syntax and
options.

A.5.2 Optional Startup Environment and Java Configuration

CRUSH ships with a default Java configuration. On the most common UNIX platforms
(Linux, Mac OS X, BSD, and Solaris), it will automatically attempt to set an optimal
configuration. On other platforms, CRUSH will default to a fail-safe startup configuration
(default java, 32-bit mode and 1GB of RAM use). To override these defaults on Windows,
edit ‘wrapper.bat’ directly (and note, that you will have to repeat this step every time you
reinstall or update CRUSH on Windows).

The preferred method for overriding defaults on POSIX systems (e.g. UNIX and Mac OS
X), is by placing your settings in arbitrary files under /etc/crush2/startup or⇠/.crush2/startup.
Any settings in the user’s home under ⇠/.crush2/startup will override the system-wide val-
ues in /etc/crush2/startup. If multiple config files exist in the same location, these will be
parsed in non-specific order. These configurations are independent of the CRUSH instal-
lation, and will survive reinstall and updates to CRUSH. E.g., placing the following lines
in ⇠/.crush2/startup/java.conf overrides all available runtime settings:

JAVA ="/ usr/java/latest/bin/java"
DATAMODEL ="64"
USEMB ="4000"
JVM=" server"
EXTRAOPTS="-Djava.awt.headless=true"

Upon startup CRUSH will find and apply these settings, so it will use ‘/usr/java/lat-
est/bin/java’ to run CRUSH, in 64-bit mode, with 4GB of RAM, using the HotSpot ‘server’
VM, and in headless mode (without display, mouse or keyboard).

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
50

SOF-US-HBK-OP10-2008
Rev. A

Below is a guide to the variables that you can override to set your own Java runtime
configuration:

• JAVA: Set to the location of the Java executable you want to use. E.g. “java” to
use the default Java, or “/usr/java/latest/bin/java” to use the latest from Oracle or
OpenJDK.

• DATAMODEL: Set to “32” or “64”, to select 32-bit or 64-bit mode. To use 64-bit
mode you will need both a 64-bit OS and a 64-bit JRE (Java Runtime Environment)
installation.

• USEMB: Set to the maximum amount of RAM (in MB) available to CRUSH. E.g.
“4000” for 4GB. Note, that when DATAMODEL is “32”, you this value must be
somewhere below 2000. Thus, “1900” is a good practical maximum value to use in
32-bit mode. Due to the volume of full-rate HAWC+ data (> 500MB/min), you will
need to configure Java with su�cient RAM to accommodate entire scans.

• JVM: Usually set to “server” for Oracle or OpenJDK. If using IBM’s Java, set it to
“” (empty string). On ARM platforms, you probably get better performance using
“jamvm” or “avian”. To see what VM options are available, run ‘java -help’. The
VM options are listed near the top of the resulting help screen.

• EXTRAOPTS: Any other non-standard options you may want to pass to the Java
VM should go here.

You can also specify environment variables, and add shell commands (bash), since these
configuration files are in fact sourced as bash scripts before launching Java / CRUSH. For
example you can add:

CRUSH_NO_UPDATE_CHECK ="1"
CRUSH_NO_VM_CHECK ="1"
echo "Will try to parse my own configuration now ... "
if [-f ~/ mycrushconfig.sh] ; then

echo -n "OK"
source ~/ mycrushconfig.sh

else
echo -n "Not found"

fi

The above will disable update checking (not recommended!) and VM checking (also not
recommended!) and will source the contents of ‘⇠/mycrushconfig.sh’ if and when such a
file exists.

A.5.3 Running CRUSH

The basic syntax to run CRUSH is:

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
51

SOF-US-HBK-OP10-2008
Rev. A

<path -to-crush/>crush hawc+ [options] <scanlist > ...

For quick reference, simple UNIX-style man pages for all tools of the CRUSH suite (in-
cluding the reduction pipeline ‘crush’ itself) are also available online.

Locating scan data can be done in one of two ways. The default method of locating files
is by file name, which may specify either an absolute path, e.g.:

crush hawc+ /data/hawc+/ F0004_HC_IMA_0_HAWC_HWPC_RAW_105.fits

or, it can be filename/path relative to ‘datapath’:

crush hawc+ F0004_HC_IMA_0_HAWC_HWPC_RAW_105.fits

The two are equivalent assuming that ‘datapath’ is set to ‘/data/hawc+’ in the second
case, e.g. in the user configuration file ‘⇠/.crush/hawc+/default.cfg’, or on the command-
line.

Often, the simpler way of locating input files is by a combination of flight and scan num-
bers. This is often shorter, and allows to specify multiple scans and ranges with more
ease. Scan lookup by flight and scan number requires you to set ‘datapath’ to point
to the data directory. E.g., by placing the line in the user configuration for HAWC+
(‘⇠/.crush2/hawc+/default.cfg’):

datapath /data/hawc+

Now, you may simply reduce scan 105 from flight 354 as:

crush hawc+ -flight =354 105

You can also reduce multiple scans from multiple flights together. E.g.:

crush hawc+ -flight =354 104 -105 129 -flight =356 13 16 33-35

The above will co-reduce 3 scans (104, 105, 129) from flight #354 with 5 scans (13, 16, 33,
34, 35) from flight #356.

A.5.4 Command-Line Options

Some common HAWC+ command-line options are listed in Section 6.6, and a complete
listing is available in the CRUSH GLOSSARY file. The below are some parameters useful
specifically for running CRUSH directly without the DRP.

Reduction options precede the entire list of scans. Some common reduction options to be
used by HAWC+ are:

• -datapath=<path>: The location of the raw scan FITS data files. E.g. -outpath=/data/hawc+

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
52

SOF-US-HBK-OP10-2008
Rev. A

• -outpath=<path> : The output root folder for images and other output files. E.g.
-outpath=⇠/mydata/hawc+/crush/images

• -name=<outputname> : The name of the output FITS image, relative to the
output path. E.g. -name=myscan.fits

Scan-specific options apply to all scans listed after the option on the command-line, but
not to the scans listed before. For example:

• -pointing=dx,dy: Adjust the pointing by dx,dy arcsecs (in AZ / EL, i.e. tXEL /
tEL).

• -tau=X, tau.pwv=X: Specify an inband zenith tau or water-vapor level for calcu-
lating extinction correction for each scan

• -scale=X: Apply a calibration scaling factor

A.5.5 CRUSH News, Feedback, and Bug Reports

If you run CRUSH as a standalone pipeline, you may wish to keep informed of its latest
developments. You can get email notifications of new releases by subscribing to updates
at the CRUSH SourceForge project page. Simply enter your e-mail address in the box
labeled KEEP ME UPDATED, press the Follow button, and you will be notified of new
releases, and updates in the future. You can stop update notifications at the same place at
any time. You can file reports of bugs you might encounter in CRUSH on the SourceForge
project page, under the Bugs tab. Once there, you may also subscribe to bug notification
e-mails.

A.6 IDL Redux Interface

The SOFIA DPS team maintains a general-purpose interface to their pipelines, called
Redux, which has been adapted to run HAWC reductions.

A.6.1 Installation

Running Redux requires IDL 8.5 or later, as well as the latest version of the IDL Astronomy
User’s Library, the Coyote graphics library, package, the FSpextool package, and the Redux
code. FSpextool and Redux are under SOFIA DPS revision control and can be obtained
directly from git repositories there. The IDL Astronomy User’s Library (astrolib) is pub-
licly available, and can be downloaded from the website at http://idlastro.gsfc.nasa.
gov/homepage.html. The Coyote graphics library (coyote) is also publicly available and

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
53

https://sourceforge.net/projects/crush-software/
http://idlastro.gsfc.nasa.gov/homepage.html
http://idlastro.gsfc.nasa.gov/homepage.html

SOF-US-HBK-OP10-2008
Rev. A

can be downloaded from http://www.idlcoyote.com/documents/programs.php. When
these packages have been installed, their locations should be added to the IDL PATH
environment variable, so that their procedures are accessible to Redux.

SOFIA may distribute the Redux and FSpextool codes as gzipped tar files. If so, unpack
them, as, for example:

tar xvzf redux.tar.gz
tar xvzf fspextool.tar.gz

This will create directories called ‘redux’ and ‘fspextool’, which will contain a number of
subdirectories. Each of these package directories should be added to the IDL PATH as
well.

A.6.2 Running Redux

To run Redux, start IDL, then from the prompt call the command ‘redux’, with no argu-
ments. This will launch the Redux GUI.

To start an interactive reduction, select a set of HAWC files, using the file menu (File !
Open New Reduction). All files selected will be reduced together as a single reduction set.
Redux will decide the appropriate reduction steps from the input files, and load them into
the GUI, as in the screenshot below.

Each reduction step has a number of parameters that can be edited before running the step.
To examine or edit these parameters, click the Edit Param button next to the step name to
bring up the parameter editor for that step. Within the parameter editor, all values may be
edited; clicking Done will save the edited values and close the window. Clicking Reset will
restore any edited values to their defaults; clicking Cancel will discard all changes to the
parameters and close the editor window. The current set of parameters can be displayed,
saved to a file, or reset all at once using the Parameters menu. A previously saved set of
parameters can also be restored for use with the current reduction (Parameters ! Load
Parameters).

After all parameters for a step have been examined and set to the user’s satisfaction, a
processing step can be run on all loaded files either by clicking Step, or the Run button
next to the step name. Each processing step must be run in order, but if a processing step
is selected in the Step to: widget, then clicking Step will treat all steps up through the
selected step as a single step and run them all at once. When a step has been completed,
its buttons will be grayed out and inaccessible. It is possible to undo one previous step by
clicking Undo. All remaining steps can be run at once by clicking Reduce. After each step,
the results of the processing will be displayed in the display window. Clicking Reset will
restore the reduction to the initial state, without resetting parameter values.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
54

http://www.idlcoyote.com/documents/programs.php

SOF-US-HBK-OP10-2008
Rev. A

Figure 7: Redux for HAWC Screenshot

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
55

SOF-US-HBK-OP10-2008
Rev. A

Files can be added to the reduction step (File ! Add Files) or removed from the reduction
set (File ! Remove Files), but either action will reset the reduction for all loaded files.
Selecting Display ! Display File Information, or the More Info button, will pull up a table
of information about the currently loaded files. The table rows displayed can be filtered
by entering a search string into the Filter text box.

Redux displays images using ximgtool, a full-featured display tool distributed with FSpex-
tool. For more information, see the ximgtool help file, available from Redux via the Help
button just above the display.

Ximgtool has five bu↵ers available for simultaneous display of images. If there are more
than five images loaded into Redux, they can be viewed by selecting Display ! Quick Look
from the Redux menu. This will cycle through each data file in its current processing state,
allowing interaction and analysis with each image in turn. To move between images, click
the Next File or Previous File buttons, below the image. Click Cancel to quit the quick
look display.

Note that Redux for HAWC, while useful for interactively exploring the data reduction
steps, has some overhead compared to the native DRP interface, due to calling the Python
functions as separate, external steps from the IDL structure.

B Appendix: Sample Configuration Files

B.1 Full DRP Configuration File

Below is a copy of the full configuration file used by the pipeline in the DPS environment
(pipeconf dcs.txt). The format is defined by the configobj Python module.

HAWC Pipeline Configuration File - DCS Version
v1.0.0

General Section: configuration of the pipeline
[general]

list of packages to look for pipe step modules (order matters)
steppacks = hawc , hawcV0 , tesdetector , detbolo , sharp , drp , labdiag
list of steps for default / unknown instrument mode
stepslist = StepLoadHAWC , StepDemod

Data Section: information on data objects and file names
[data]

Regexp for part of the filename before the file step identifier
filenamebegin = '\A((\d.+)|(F\d{3,4} _HA_[A-Za-z]+_[A-Za -z0 -9]+_[A-Za -

z0 -9]+))_'
filenameend = '_((\d+-)?\d+)\.fits (\.gz)?\Z' # HAWC+

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
56

SOF-US-HBK-OP10-2008
Rev. A

filenum = '(?:\A.*F\d{3,4}_((?:\d+-)?\d+)_.*\. fits (?:\. gz)?\Z)|(?:\ AF
\d{3,4}_HA.*_((?:\d+-)?\d+)\.fits (?:\.gz)?\Z)'

dataobjects = DataFits , DataText #, DataCsv

Pipeline Section: Configuration of the pipeline
[pipeline]

Number of final results to save
finalsaveN = 5

Pipelines Section: configuration for individual pipeline modes

ChopNod Mode Configuration
[mode_nod]

datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = TOTAL_INTENSITY '
list of steps
stepslist = load , StepCheckhead , StepFluxjump , StepPrepare , StepDemod

, save , StepFlat , StepShift , StepSplit , StepCombine ,
StepNodPolSub , StepStokes , StepWcs , save , StepOpacityModel ,
StepBgSubtract , StepRotate , StepMerge , StepCalibrate , save

Nod -Pol Mode Configuration
[mode_nodpol]

List of keyword=values required in file header to select this
pipeline mode

Format is: Keyword=Value|Keyword=Value|Keyword=Value
datakeys = 'INSTMODE = C2N (NMC)|INSTCFG = POLARIZATION '
list of steps
stepslist = load , StepCheckhead , StepFluxjump , StepPrepare , StepDemod

, save , StepFlat , StepShift , StepSplit , StepCombine ,
StepNodPolSub , StepStokes , StepWcs , save , StepOpacityModel ,
StepBgSubtract , StepIP , StepRotate , StepMerge , StepCalibrate ,
save , StepPolVec , save , StepRegion

Scan Mode Configuration
[mode_scan]

datakeys = 'INSTMODE=OTFMAP|INSTCFG=TOTAL_INTENSITY '
stepslist = StepCheckhead , StepCrush , save

Mode for Internal Calibrator File to generate flats
[mode_intcal]

datakeys ='CALMODE=INT_CAL '
list of steps
stepslist = load , StepCheckhead , StepFluxjump , StepPrepare , StepDemod

, StepMkflat
Always attempt to continue reduction
[[checkhead]]

abort = False
Stepprepare change to labmode and get Chop Offset from

crioAnalogChopOut
[[prepare]]

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
57

SOF-US-HBK-OP10-2008
Rev. A

labmode=True
colrename = 'crioAnalogChopOut -> Chop Offset|AZ_Error ->Azimuth

Error|EL_Error ->Elevation Error|AZ ->Azimuth|EL ->Elevation|
SIBS_VPA ->Array VPA '

chpoffsofiaRS = False
Change demodulation options
[[demod]]

l0method = 'ABS '
boxfilter = -1 # Box Highpass Filter
chopavg = True # Flag to save chop averaged raw data (default =

False)
phasefile = 0.0

Pipe Step Section
First the definitions for the parent steps , then all HAWC
in alphabetical order.

R and T alignment step
[align]

angle = 0.0 # rotation angle of R relative to T, in degrees
counterclockwise

mag = 1.0, 1.0 # Magnification of R relative to T, in the x,y pixel
direction

disp = 0.0, 0.0 # Pixel displacement of R relative to T, in the x,y
directions

xpoint = 0.0, 0.0, 0.0, 0.0 # Pointing offset in x pixels of R
relative to T, for each HWP angle

ypoint = 0.0, 0.0, 0.0, 0.0 # Pointing offset in y pixels of R
relative to T, for each HWP angle

thresh = 0.5 # Mask values >= this threshold value are bad (set to
1)

Badpix step
[badpix]

dead_thresh = 10.0 # Threshold variable for sd for dead pixel
ramp_thresh = 2000000.0 # Threshold variable for sd for ramping

pixel
auxfile = '' # Filename for aux file

background subtraction step
[bgsubtract]

cdelt = 2.55, 4.0, 4.0, 6.8, 9.1 # Pixel size in arcseconds of
output map

proj = TAN # Projection of output map
bgslope = 0 # Number of iterations of background subtraction with

slope term
bgoffset = 10 # Number of iterations of background subtract with

offset (intercept) term
fwhm = 2.5, 3.0, 5.0, 7.5, 10.0 # FWHM of gaussian smoothing kernel ,

in arcseconds

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
58

SOF-US-HBK-OP10-2008
Rev. A

radius = 5.0, 6.0, 10.0, 15.0, 20.0 # Integration radius for
smoothing , in arcseconds

chauvenet = True # Use Chauvenet 's criterion in background
subtraction?

fitflag = False # Use errors in intensity when fitting?
covflag = False # Use covariances when performing gaussian smoothing

?
errflag = True # Use uncertainties when computing averages?
widowstokesi = True # Use widow pixels (flagged 1 or 2) when

smoothing
polthetamaps = False # Compute preliminary polarization degree

and angle maps

Calibrate fluxes from data units to Jy/pixel
[calibrate]

fac = 0.0454 , 0.038, 0.0345 , 0.0291 , 0.0419 # Multiplicative factor
to convert fluxes to Jy (for each band)

Combine R-T and R+T data
[combine]

sigma = 3.0 # Reject outliers more than this many sigma from the
mean

covflag = False # Set to False to skip computation of covariances (
faster)

create maps of median covariance by row and by entire map and flag bad
pixels

[covar]
mapcut = 1.0 # cutoff for median map covariance
rowcut = 1.0 # cutoff for median row covariance

Check the primary FITS header for required keywords
[checkhead]

abort = True
headerdef = $DPS_HAWCPIPE/pipeline/config/header_req_config.txt

Run the crush scan data reduction
[crush]

crushpath = $DPS_HAWCPIPE/crush
options = 'hawc+ -drp -unit=Jy/pixel -tau=atran -blacklist=smooth '
verbose = True

Datagroup step , used for focus script to bundle files to merge
[datagroup]

data reduction step to use
redstepname = StepMerge
List of header keywords to decide data group membership:
(| separated list)
groupkeys = 'FOCUS_ST '
List of group key formats to force string comparison

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
59

SOF-US-HBK-OP10-2008
Rev. A

(unused if equal "", | separated list)
groupkfmt = '%.1f'

Demodulate the chopped data
[demod]

chop_tol = 0.2 # chopper tolerance in arcseconds (not used for
sine)

nod_tol = 5.0 # nod tolerance in arcseconds
hwp_tol = 2.0 # hwp angle tolerance in degrees
az_tol = 5000.0 # Azimuth error tolerance in arcseconds
el_tol = 5000.0 # Elevation error tolerance in arcseconds
samp_tol = 50.0 # Sample tolerance as a percentage. High and low

chop states must have a difference in number of samples less than
this value .(not used for sine)

track_tol = 'beam ' # Track error tolerance in arcseconds (AOIs 3 and
4) - set negative to deactivate

track_extra = 0.0 ,1.7 # Extra samples removed (in seconds) before and
after samples flagged by track_tol

mode = sine # Demodulation mode. Options are sqr and sine
chopphase = True # Flag requiring chop phase correction (not used

for sqr)
checkhwp = True # Set to FALSE to avoid checking the expected

number of HWP angles
phasefile = $DPS_HAWCPIPE/pipeline/data/phasefiles/masterphase_170307

.fits # Phase file information file (0.0 = no phase is default)
l0method = RE # Method to normalize data: REal , IMag and

ABSolute (default = RE)
highfilter = 0.0 # Time constant for RC hipass filter (default 0.0=

no filter)
boxfilter = -1 # Time constant for box hipass filter (default

0.0=no filter , -1 for 1/ CHPFREQ)
filtersave = False # Flag to save filtered data (default = False)
chopavg = False # Flag to save chop averaged raw data (default =

False)

Compute pointing drifts between HWP angles
[drift]

ofac = 1 # Oversampling factor (integer)

Fill in widow pixels
[fill]

model = mean(sigma =3) # Model specification

Flat step configuration
[flat]

flatfile = flats /*. fits # File glob for flat file
fitkeys = 'SPECTEL1 ', 'SPECTEL2 ', 'FILEGPID ' # List of keys that

need to match flat
bkupflatfile = $DPS_HAWCPIPE/pipeline/data/flats /*. fits # Backup

flat files

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
60

SOF-US-HBK-OP10-2008
Rev. A

reload = True # Reload flat for each input file
l0method = NO # method to normalize data (standard is NO, options

are NO , RE , IM and ABS)
datalist = R array , T array # list of input file datasets to

flatten
addfromfile = R BAD PIXEL MASK , T BAD PIXEL MASK # additional data

from the flat file

[flatclean]
computeflatbad = False # Use algorithm to compute a flat image per

file. If False , will use flat and bad pixel masks from input
chopcrop = 0,0 # Number of chops to crop in the beginning and end of

the demodulated timestream
histogram = 100 , -1000 , -1000 ,10000 ,10000 ,4 # Histogram parameters for

robust median: nbins , lowlimR , lowlimT , highlimR , highlimT , factor
badpix_highstd = 10 # Lower limit of ynormstd to look for very high

std of the demodulated signal
badpix_lowsig = 0.4 # Upper limit of ynorm to identify and eliminate

pixels with very low signal
badpix_highsig = 7.0 # Lower limit of ynorm to identify pixels with

very high normalized signals

Flux Jump step configuration
[fluxjump]

Filepathname specifying the jump gap map , alternatively a number
for the

gap to be used for all pixels (default = '4600')
jumpmap = $DPS_HAWCPIPE/pipeline/data/fluxjumps/FluxjumpFS14Columns.

fits

Correction for instrumental polarization
[ip]

qinst = -0.01191 , 0.0, -0.01787 , -0.00055 , -0.01057 # Fractional
instrumental polarization in q

uinst = -0.00273 , 0.0, 0.00758 , 0.02179 , -0.01201 # Fractional
instrumental polarization in u

qtel = 0.0, 0.0, 0.0, 0.0, 0.0 # Fractional telescope polarization
in q (each waveband)

utel = 0.0, 0.0, 0.0, 0.0, 0.0 # Fractional telescope polarization
in u (each waveband)

Merge step configuration
[merge]

cdelt = 2.55, 4.0, 4.0, 6.8, 9.1 # Pixel size in arcseconds of
output map

proj = TAN # Projection of output map
fwhm = 2.55 ,4.0 ,4.0 ,6.8 ,9.1 # FWHM of gaussian smoothing kernel (

arcsec)
radius = 9.4 ,11.6 ,15.6 ,28.0 ,38.0 # Integration radius for smoothing (

arcsec)

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
61

SOF-US-HBK-OP10-2008
Rev. A

covflag = False # Use covariances when performing gaussian smoothing
?

errflag = True # Use uncertainties when computing averages?
widowstokesi = True # Use widow pixels (flagged 1 or 2) to compute

Stokes I map
conserveflux = True # Apply flux conservation factor
minnpix = 0.0

Make flat file from INT_CAL files
[mkflat]

skycal = $DPS_HAWCPIPE/pipeline/data/skycals /*. fits
fitkeys = 'SPECTEL1 ', 'SPECTEL2 '
flatoutfolder = flats
groupkey = FILEGPID

Subtract L and R nods with HWP configuration
[nodpolsub]

Correction for atmospheric opacity step configuration
[opacity]

Correction for model atmospheric opacity step configuration
[opacitymodel]

respfolder = $DPS_HAWCPIPE/pipeline/data/response
fittype = alt
za_ref = 45.0
alt_ref = 41000
pwv_ref = 7.3

Polarization vector step configuration
[polvec]

eff = 1.0 ,1.0 ,1.0 ,1.0 ,1.0 # telescope polarization efficiency
chi2 = 1.0 # inflate errors in q,u by sqrt of this factor
save = False # Write out text file of polarization data

Prepare file for demodulation
[prepare]

detcounts = 'SQ1Feedback ' # Name of the column containing the
detector flux values R/T arrays

hwpcounts = 'hwpCounts ' # Name of the input fits column containing
the HWP counts (only used if column "HWP Angle" is not present)

hwpconv = 0.25 # Value to convert hwpcounts to HWP Angles (only
used if column "HWP Angle" is not present)

labmode = False # If TRUE (processing lab data), will fill in with
zeros a few columns and keywords that are important for the DRP

replacenod = True # If TRUE will replace Nod Offset by calculation
based on RA/DEC. If False use original column (has problems)

chpoffsofiaRS = True # If TRUE will calculate Chop Offset based on
SofiaChopR/S. If False the user should use colrename to specify
which column to use

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
62

SOF-US-HBK-OP10-2008
Rev. A

colrename = 'AZ_Error ->Azimuth Error|EL_Error ->Elevation Error|AZ->
Azimuth|EL ->Elevation|SIBS_VPA ->Array VPA|NOD_OFF ->Nod Offset ' #|
Right ascension ->RA|DEC ->Dec '

coldelete ="hwpA","hwpB"," FluxJumps"
traceshift =0 # Number of samples to shift the data (default is 0 i.e

. no shift)
pixscalist =2.57 ,3.97 ,3.97 ,6.93 ,9.33 # List for PIXSCAL values for

each band
multiplyminusone = False # Multiply raw data by (-1) to correct

for negative Stokes I image (default is False)

Extract ds9 region file of polarization vectors
[region]

skip = 1 # Only plot every ith pixel
scale = True # Set to False to make all vectors the same length
rotate = False # Use rotated (B-Field) vectors
debias = True # Use debiased polarizations
mini = 0.0 # Do not plot vectors with flux < this fraction of peak

flux
minp = 0.3 # Require percentage polarizations to be >= this value
offset = 0, 0 # Offset in pixels in x,y (controls which pixels are

extracted)
length = 10.0 # Scale factor for length of polarization vectors in

pixels
sigma = 5.0 # p/sigmap must be >= this value
format = ds9 # Output file format. (ds9 or txt)

Rotate Q and U from detector to sky frame step configuration
[rotate]

gridangle = -78.69, 0.0, -93.28, 48.42 , 130.62 #Angle of the grid in
degrees (for each waveband)

hwpzero_tol = 3.0 #Tolerance in the difference between commanded and
actual initial HWP angles

hwpzero_option = 'commanded ' #Option to use between "commanded" or "
actual" in case the difference between the initial HWP angles is >
hwpzero_tol

Account for R/T misalignment and apply integer displacements (shifts)
[shift]

angle1 = 0.0 # rotation angle of R1 relative to T1, in degrees
counterclockwise

angle2 = 0.0 # rotation angle of R2 relative to T2, in degrees
counterclockwise

mag = 1.0, 1.0 # Magnification of R relative to T, in the x,y
pixel direction

disp1 = 0.0, 0.0 # Pixel displacement of R1 relative to T1 , in the
x,y directions

disp2 = 0.0, 0.0 # Pixel displacement of R2 relative to T2 , in the
x,y directions

gapx = 4.0 # displacement in x pixels between T1 and T2

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
63

SOF-US-HBK-OP10-2008
Rev. A

gapy = 0.0 # displacement in y pixels between T1 and T2
gapangle = 0.0 # Rotation angle in degrees CCW between T1 and T2

Split data by HWP angle and nod position step configuration
[split]

nod_tol = 100.0 # Nod tolerance , as the percent difference allowed in
number of chop cycles between 1st and 2nd left , and between left

and right
rtarrays = RT # Use both R and T arrays (RT), or only R (R) or only

T (T)

Compute Stokes I, Q, U step configuration
[stokes]

hwp_tol = 5.0 # HWP angles for Stokes parameters must differ by no
more than 45+- hwp_tol degrees

erri = median # How to inflate errors in I. Can be median , mean , or
none

erripolmethod = meansigma # Options are "hwpstddev" or "meansigma"
removeR1stokesi = True # Remove R1 subarray for Stokes I
widow = False # Set to true to fix fluxes of widow pixels
method = pairs # Method to obtain Stokes Q and U. Can be pairs or fit
polthetamaps = False # Compute preliminary polarization degree and

angle maps

Update Parallactic angle and crval1 and crval2 for a single file
[wcs]

add180vpa = True # Add 180 degrees to the SIBS_VPA
offsibs_x = 0.29, 0.0, -1.22, 0.73, -0.07 # offset (in pixels along X)

between SIBS_X and actual target position
offsibs_y = -1.29, 0.0, -1.80, 0.97, -0.49 # offset (in pixels along Y

) between SIBS_Y and actual target position
labmode = False # If labmode = True , will ignore keywords and input

parameters and create fake astrometry

Logsocket "step" configuration
[logsocket]

host = 'localhost ' # host
port = 50747 # port SOfia 747
deflogger = 'pipe.logsocket ' # default logger

Data Section

Treatment of the FITS header: can include keyword replacement
The keyword value and comment must be printed as they would in a FITS

header
If the value is another keyword , the value of that keyword will be used
instead (This only works if the other keywords starts with an

alphabetic
character).
[header]

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
64

SOF-US-HBK-OP10-2008
Rev. A

TAUOBS = 0.0 / Estimated optical depth

Merge Header Section: How to merge header keywords when headers from
several files are merged. Options are:
- FIRST (default), LAST: For all values
- DEFAULT: For all values (-9999 for ints , UNKNOWN for strings , etc)
- MIN , MAX , SUM: For numbers
- AND , OR: For boolean flags
- CONCATENATE: For strings
[headmerge]

ALTI_END = LAST
ASSC_AOR = CONCATENATE
DTHINDEX = DEFAULT
LAT_END = LAST
LON_END = LAST
FBC -STAT = LAST
FOCUS_EN = LAST
SIBS_X = DEFAULT
SIBS_Y = DEFAULT
UTCEND = LAST
WVZ_END = LAST
ZA_END = LAST
TRACERR = OR
TSC -STAT = LAST

Treatment for table values when combining images
Options are MIN , MED , AVG , FIRST , LAST , SUM
[table]

samples = SUM
chop offset = WTAVG
nod offset = WTAVG
hwp angle = WTAVG
azimuth = WTAVG
azimuth error = WTAVG
elevation = WTAVG
elevation error = WTAVG
array vpa = WTAVG
nod index = WTAVG
hwp index = WTAVG
nod offset orig = FIRST
framecounter = FIRST
crioframenum = WTAVG
hwpcounts = WTAVG
fasthwpa = WTAVG
fasthwpb = WTAVG
fasthwpcounts = WTAVG
a2a = WTAVG
a2b = WTAVG
b2a = WTAVG
b2b = WTAVG

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
65

SOF-US-HBK-OP10-2008
Rev. A

chop1 = WTAVG
chop2 = WTAVG
criottlchopout = FIRST
sofiachops = WTAVG
sofiachopr = WTAVG
sofiachopsync = WTAVG
ai23 = WTAVG
crioanalogchopout = FIRST
irigupdatediff = FIRST
timestamp = WTAVG
ra = FIRST
dec = FIRST
chop_vpa = FIRST
lon = FIRST
lat = FIRST
lst = WTAVG
los = WTAVG
xel = WTAVG
tabs_vpa = FIRST
pitch = WTAVG
roll = WTAVG
nonsiderealra = WTAVG
nonsiderealdec = WTAVG
flag = WTAVG
pwv = FIRST
nodpositionreached = FIRST
trackerraoi3 = FIRST
trackerraoi4 = FIRST
trackerraoi5 = FIRST
r array imag = FIRST
t array imag = FIRST
chop offset imag = FIRST
r array avg = FIRST
t array avg = FIRST
phase corr = WTAVG

B.2 DRP Override Configuration File

Below is an override configuration file that demonstrates how to set override parameters to
provide to the HAWC pipeline. The parameters listed here are those most likely to change
from one flight series to another.

HAWC Pipeline Configuration File - Overrides for FS13
(commissioning 2 and OC4L).
This is not a full configuration file -- it should be merged
with pipeconf_dcs.txt before using.
#
2016 -12 -08 M. Clarke

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
66

SOF-US-HBK-OP10-2008
Rev. A

Calibrate fluxes from data units to Jy/pixel
[calibrate]

fac = 0.0454 , 0.0, 0.0345 , 0.0291 , 0.0419

Demodulate the chopped data
[demod]

phasefile = $DPS_HAWCPIPE/pipeline/data/phasefiles/
F0005_HAWC_HWPC_138 -180 _phase_161011.fits

Flat step configuration
[flat]

fitkeys = 'SPECTEL1 ', 'SPECTEL2 ', 'FILEGPID '
bkupflatfile = $DPS_HAWCPIPE/pipeline/data/flats /*. fits

Correction for instrumental polarization
[ip]

qinst = -0.01191 , 0.0, -0.01787 , -0.00055 , -0.01057
uinst = -0.00273 , 0.0, 0.00758 , 0.02179 , -0.01201
qtel = 0.0, 0.0, 0.0, 0.0, 0.0
utel = 0.0, 0.0, 0.0, 0.0, 0.0

Rotate Q and U from detector to sky frame step configuration
[rotate]

gridangle = -78.69, 0.0, -93.28, 48.42 , 130.62

Update Parallactic angle and crval1 and crval2 for a single file
[wcs]

offsibs_x = 0.29, 0.0, -1.22, 0.73, -0.07
offsibs_y = -1.29, 0.0, -1.80, 0.97, -0.49

B.3 Full CRUSH Configuration File

Below is an example of the default global configuration file for CRUSH. Other configuration
files specifying values for specific instruments or modes may override values in this file. See
the CRUSH documentation for more information.

Set the spherical projection to use.
The following projections are currently supported:
#
SIN -- Slant Orthographic
TAN -- Gnomonic
SFL -- Sanson -Flamsteed
ZEA -- Zenithal Equal Area
MER -- Mercator
CAR -- Plate -Carree
AIT -- Hammer -Aitoff
GLS -- Global Sinusoidal

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
67

SOF-US-HBK-OP10-2008
Rev. A

STG -- Stereographic
ARC -- Zenithal Equidistant
#
The default is SFL , which is widely used , and is the fastest to

calculate ...
projection SFL

Make equatorial maps by default. Other possibilities are 'horizontal ',
'ecliptic ', 'galactic ', 'supergalactic ', and 'focalplane '
system equatorial

Set the parallelisation mode. The value should be one of:
scans -- Each scan is reduced in a separate thread.
ops -- Each scan is reduced by parallel threads , one at a time

.
hybrid -- Optimal threading with as many scans run in parallel as
possible , each reduced with some number of parallel

threads.
parallel hybrid

For maps aligned to focal plane coordinates , do not attempt getting
pointing

offsets
[system?focalplane] blacklist point

Do not attempt pointing fir on skydips
[source.type?skydip] blacklist point

The ordering of models in the default reduction pipeline.
ordering offsets , drifts , correlated.obs -channels , weighting.frames ,

whiten , weighting , despike , correlated.gradients , correlated.accel ,
source

Automatically create the output path , if it does not exists
#outpath.create

In case an outputput name was set before loading default.cfg , clear it
forget name

Turn this option on if you want to see intermediate maps as the
reduction

progresses. These are (over -) written to 'intermediate.fits '.
#source.intermediates

The default 1/f stabilty time scale. Instruments should define their
own.

stability 15.0
[extended] stability 30.0

Determine the velocity clipping based on stability and beam size ...

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
68

SOF-US-HBK-OP10-2008
Rev. A

vclip auto

The telescope pointing tolerance (in beams), e.g. for positions
switched

photometry
pointing.tolerance 0.2

The maximum fraction of samples which can be out -of -range before the
channel

is flagged for being unusable.
range.flagfraction 0.05
[source.type?skydip] range.flagfraction 0.75

Downsample data as needed ...
downsample auto

Check for timestream gaps and fill with null frames as necessary
fillgaps

Remove the DC offsets before entering pipeline.
level

Signal estimators to use ('median ' or 'maximum -likelihood ').
estimator median
iteration .[2] estimator maximum -likelihood

Solve for pixels gains (with specified estimator type)
gains
gains.estimator maximum -likelihood

Whether to measure responses to signals. If the option is set ,
the responses are printed in curly brackets during reduction. The
values represent the normalized covariance of residuals to
the given signals. By default response calculation is disabled
to speed up reduction. It is mainly useful for designing
instrument pipelines , whereas it is only informational once
the pipelines are established.
#signal -response

Enable filtering (components need to be enabled separately).
filter

Define how FFT filters are to be compounded
filter.ordering motion , kill , whiten

Apply the kill filter only once before downsampling & reduction
pipeline.

iteration .[1] forget filter.kill

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
69

SOF-US-HBK-OP10-2008
Rev. A

Turn on additional re -levelling of the filtered signal to be extra
pedantic

This will make filtering slower , without noticeable increase in
effectiveness ...
#filter.mrproper

Set 'whiten ' as an alias to 'filter.whiten ' for backward compatibility
alias.whiten filter.whiten

Define the shorthand 'motion ' for 'filter.motion '
alias.motion filter.motion

Remove the scan synchronous signals , e.g. telescope vibrations.
#filter.motion
filter.motion.range 0.01:1.0
filter.motion.s2n 6.0
filter.motion.above 0.3
#filter.motion.stability 30.0
[extended] forget filter.motion
#[filter.motion] forget whiten.below

Shorthand 'kill ' for 'filter.kill '
alias.kill filter.kill

A frequency quenching filter can be enabled when needed , with all
frequencies

in the specified bands being eliminated from the timestream data ...
#filter.kill
#filter.kill.bands 10.1--10.2, 12.35 - -12.37

Derive pixel weights (via 'rms ', 'differential ' or 'robust ' method).
weighting
weighting.method rms
[extended] weighting.method differential

Specify the range of acceptable pixel noise rel. to the median pixel
noise

Channels outside of this admissible range will be flagged.
weighting.noiserange 0.1:10.0

Time weighting (optionally with time -resolution in seconds or 'auto ').
Time weighting should be used with caution. It can lead to unstable

solutions
especially when there is bright/extended emission. Therefore it should

be
used with the longest possible time -scale , or not at all...
#weighting.frames
[extended] forget weighting.frames

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
70

SOF-US-HBK-OP10-2008
Rev. A

Set the time window (seconds) for weighting frames , or 'auto '.
weighting.frames.resolution auto

Specify an acceptable range for time -weights. Frames with weights
outside

this range will be flagged.
weighting.frames.noiserange 0.3:3.0

Solve for source !!!
source
source.type map

Some aliases for easy selection of source types
[map] source.type map
[beammap] source.type beammap
[skydip] source.type skydip

If beam mapping , then reduce in horizontal
[source.type?beammap] system focalplane

Do not use initial pixel data when reducing beammaps ...
[source.type?beammap] blacklist pixeldata

Simplify pipeline for skydips ...
[source.type?skydip] blacklist aclip ,vclip ,drifts ,offsets ,whiten ,point
#[source.type?skydip] estimator median

If inserting test sources into the data , use static source gains
[sources] source.fixedgains

For chopped observations disable velocity and acceleration clipping and
downsampling
[chopped] forget aclip

When calculating the array perimeter (for sizing maps) how many
sections to

use. For very large arrays , especially with jagged geometry on its
edges , you

may want to use more sections than the default (100) to make sure maps
are

sized correctly. A negative or zero value will use all pixels (safest)
for

sizing maps.
perimeter auto

Require a minimum number of good pixels for mapping as a fraction of
the

nominal pixel count on the array. Note , you can also set this as a
number

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
71

SOF-US-HBK-OP10-2008
Rev. A

by using the option 'mappingpixels ' instead ...
mappingfraction 0.5

Determine the relative coupling (i.e. relative beam efficiency)
for each channel , based on the response to the bright (i.e. blanked)
areas of the source map.
EXPERIMENTAL feature! Use with caution ...
#source.coupling

Use only the points in the map that for determining coupling
efficiencies ,

which are within the specified S/N range
source.coupling.s2n 5.0:*

Define the acceptable dynamic range for the source coupling of channels
When the estimated coupling falls outside of this range , the default
value of 1.0 is assumed.
#source.coupling.range 0.3:3.0

By default source gains are dynamically calculated from the sky -noise
gains.

To override this , and to use fixed gains (e.g. from RCP files),
uncomment

the line below (or specify it on the command line).
#source.fixedgains

For skydip reductions , make source gains become the correlated gains
[source.type?skydip] sourcegains

Use MEM correction on the source map?
#source.MEM
[extended] forget source.MEM
iteration .[last] forget source.MEM

Set the 'desirability ' of MEM solution (0 -- 1)
source.MEM.lambda 0.1

Calculate coupling efficiencies suign information from RCP files
(when defined).
rcp.gains

Define 'array ' as a shorthand for 'correlated.obs -channels '
alias.array correlated.obs -channels
Always decorrelate observing channels.
array
array.gainrange 0.1:10.0
[extended] correlated .*. gainrange 0.01:100

Define 'gradients ' as a shorthand for 'correlated.gradients '
alias.gradients correlated.gradients

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
72

SOF-US-HBK-OP10-2008
Rev. A

Do not solve for gradients for extended sources
#gradients
[extended] forget gradients

Define 'sky ' as a shorthand for 'correlated.sky '
alias.sky correlated.sky

Define 'nonlinearity ' as a shorthand for 'correlated.nonlinearity '
alias.nonlinearity correlated.nonlinearity

Define 'accel ' as a shorthand for 'correlated.accel -mag '
This definition may be overwritten by instruments ...
alias.accel correlated.accel -mag

Make 'offsets ' and 'drifts ' mutually exclusive
[drifts] forget offsets
[offsets] forget drifts

Solve for pixel drifts (1/f filtering) at given timescale
drifts 30
[extended] drifts 300
drifts.method blocks
iteration .[3] drifts auto

Set the nunber of iterations required
To recover more extended emission , you can increase the number of

iterations
when using the 'extended ' option. The more you iterate , the more large

scale
emission is recovered. However , beware that the larger scales will be

also
inherently noisier due to the typical 1/f-type noise interference.
rounds 6
[extended] rounds 20

Despike with the specified method ('neighbours ', 'absolute ', 'gradual '
or

'multires ') above the critical S/N level.
despike
despike.level 100.0
despike.method neighbours
despike.flagfraction 3e-3
despike.flagcount 10
despike.framespikes 3
despike.width auto
#despike.blocks

Default dejumping settings. Level relative to noise level , and minimum
length

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
73

SOF-US-HBK-OP10-2008
Rev. A

in seconds , above which the jump will be re -levelled , below which
flagged.

You can also set the time -resolution (in deconds) of de -jumping. If not
set

all frames are dejumped individually.
dejump.level 2.0
dejump.minlength 5.0
#dejump.resolution = 0.3

Smooth internal source generations a little to get rid of pixellization
noise. This setting will not necessarily determine the smoothing of the
final output map , as the setting is normally revised in the last

iteration
(see further below)...
smooth minimal
[extendex] smooth halfbeam

Using lookup tables for sample -> map index can result in a significant
increase of speed (by 30% typically). However , these tables can take up
a lot of RAM , which may limit the reduction of large datasets.

Therefore
it is recommended to set a usage limit as a fraction of the maximum
available memory. Values around 0.8 would be typical to allow for

various
overheads during reduction.
indexing auto
indexing.saturation 0.80

Clip maps only to retain really bright source features , which have to
be removed before despiking. As the despiking level is tightened , so

the
clipping level will drop. For the final iteration the clipping is

omitted
(see further below) s.t. in the end an unbiased source map is produced.
clip 30.0

Do not clip initially when a 'source.model ' is supplied.
[source.model] forget clip

If using a source model , do not clip. (It should not be necessary ,
since

after applying the model , one should be left with faint signals only.
#[source.model] blacklist clip

Select the signedness of the expected sources. The masking will happen
when the deviation from zero is larger than the 'blank ' level in that
direction. A value of 0 makes the blanking bi -directional (both

positive
and negative deviations will be masked if large enough ...

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
74

SOF-US-HBK-OP10-2008
Rev. A

By default , we assume that sources are positive only , so accordingly
set

the blanking direction to '+'
source.sign +

Blanking of bright sources is initially set high since
it may hinder despiking ...
blank 30.0

If a source model is used , also adjust the blanking level to faint
signals

[source.model] forget blank

Now that the brightest features have been blanked , despike more tightly
, and

follow -up with clipping and blanking at lower S/N levels
iteration .[2] despike.level 30.0
iteration .[2] clip 10.0
iteration .[2] blank 10.0

Continue going for fainter fluxes in the third iteration , while
retaining

clipping of non -significant features.
iteration .[3] despike.level 10.0
iteration .[3] clip 4.0

By now the bright features should be well modeled. For fainter
structures ,

switch to using maximum -likelihood estimators
#iteration .[4] estimator maximum -likelihood
iteration .[4] despike.method absolute
iteration .[4] clip 2.0

Once a decent enough source model is reached , disable further clipping
and blanking , and allow unbiased modeling of the source. Extended

emission
will be recovered gradually with the iterations ...
WARNING! Failure to disable clipping AND blanking in time , may prevent

the
recovery of the extended emission. Change with this setting only if you

know
what you are doing ...
[extended] iteration .[3] clip 2.0
[extended] iteration .[4] blacklist blank ,despike

Use a noise whitening filter on the unmodelled residuals.
iteration .[last -1] whiten
[extended] iteration .[90%] whiten

Once solutions have sufficiently converged , allow the spectral noise

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
75

SOF-US-HBK-OP10-2008
Rev. A

whitening filter to clean the unmodeled residuals.
Set the critical level above white noise beyond which to apply

whitening
whiten.level 2.0

By default whitening only suppresses excessive noise. It is possible to
configure it such that the filter also brings noise up from below the
inverted critical level -- thus resulting in a truly white spectrum. A
white noise spectrum ensures that the map pixels/beams are uncorrelated

.
whiten.below

The maximum allowed power -boost to spectral channels when whitening
noise

below the mean ...
whiten.below.max 2.0

Set the frequency range (in Hz), in which the whitening filter is to
measure

the white -noise level. By default it will use the entire spectral range
available. The value 'auto ' will automatically tune the probe range for
point sources.
whiten.proberange auto

Weight each scan based on its measured map -noise (robust estimation)
#weighting.scans robust
[extended] forget weighting.scans

Despiking of source (per scan) above some S/N level.
forget source.despike

Minimum redundancy per scanmap pixel
source.redundancy 2
[source.type?beammap] forget source.redundancy

Correct map fluxes below clipping/blanking level for the filtering
effect

of auxillary models when map is iterated. When the map is not iterated ,
the correction automatically takes place using a different method.
iteration .[last] source.correct

Noise clip the final map , s.t. map pixels with noise more than 10-times
the

least noisy part of the map are flagged.
#noiseclip 10.0
forget noiseclip

Clip map points that have been integrated less than the specified
fraction of

the best covered part.

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
76

SOF-US-HBK-OP10-2008
Rev. A

iteration .[last] exposureclip 0.04

Make completely sure that the last map generation is without clipping.
The later clipping/blanking is disabled , the more faint extended

emission
will be filtered away ...
iteration .[last] blacklist clip ,blank

Do not smooth the final map (even if intermediates were smoothed).
[extended] smooth halfbeam
iteration .[last] forget smooth

Assuming that the source is at the end of the pipeline , there is no
need to

sync to time -streams in the last iteration. Instruments , or
configurations

in which source is moved forward in the pipeline 'ordering ', should
reset

this ...
iteration .[last] source.nosync

Do not LSS filter the source
forget source.filter

The filtering method (when used) -- 'convolution ' or 'fft '
source.filter.type convolution

The interpolation for the convolution filter (when used).
Can be 'nearest ', 'linear ', 'quadratic ' or 'cubic '
source.filter.interpolation cubic

Additional options to beam maps ...
Process beam maps like regular maps
beammap.process

Write individual images for every pixel
#beammap.writemaps
[source.type?beammap] blacklist exposureclip
[source.type?beammap] forget rcp

Specify the method for determining pointing offsets (also for beammap)
Choose between 'peak ' and 'centroid '.
pointing.method centroid

Derive pointing only if the peak S/N exceeds a critical level
pointing.significance 6.0

Discard the underexposed parts of the map when deriving pointing
results

This does not affect the output image in any way

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
77

SOF-US-HBK-OP10-2008
Rev. A

pointing.exposureclip 0.25

Use 'point ' as a shorthand for determining the pointing offsets at the
end.

[point] final:pointing suggest

Additional settings for skydips ...
The binning of skydips (in arcsec)
skydip.grid 900.0
[source.type?skydip] beam {? skydip.grid}
[source.type?skydip] beam.lock

What parameters to fit: 'tau ', 'offset ', 'kelvin ', 'Tsky '
skydip.fit tau ,offset ,kelvin

Specify manually the physical sky temperature (K) to use
#skydip.Tsky 273.0

Use uniform weighting of all sky -dip points
skydip.uniform

The maximum number of fitting attempts for skydip data.
skydip.attempts 10

Whether to attempt displaying the result (e.g. via 'gnuplot ').
#iteration .[last] show

For skydip show result by default
#[source.type?skydip] show

For reducing very large datasets , i.e. what cannot be fit into memory
in

a single go , one has no option but to split the reduction into
manageable

sized chunks , and then use 'coadd ' to create composite maps. Once a
composite is made , it can be fed back into a second reduction via the
'source.model ' key to obtain a better solution. Such manual iterating

may be
useful to get rid of negative bowls around the fainter areas , which are
not bright enough in the individual chunks. To aid the reduction of

split
datasets , you can use the 'split ' option , which disables smoothing to

create
raw maps suitable for coadding and external smoothing via 'imagetool '
[split] smooth.external

Split reductions should not be clipped by exposure either ...
[split] final:forget exposureclip

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
78

SOF-US-HBK-OP10-2008
Rev. A

Add the scan specific information at the end of the output FITS image.
Each

scan will contribute an extra HDU.
write.scandata

The above will write only some very basic information about each scan.
You can add more richness to the scan information (e.g. channel gains ,
weights , flags , noise spectra and filter profiles) by enabling the
'scandata.details ' option
#scandata.details

Write EPS (encapsulated postscript) images , if available
write.eps

You can write PNG thumbnails together with FITS images ...
write.png

Choose which image plane to write ('flux ', 'noise ', 'weight ', 'time ' or
's2n '). Default is 'flux '.
write.png.plane s2n

Choose the PNG size (in pixels)
write.png.size 500 x500

The PNG colorscheme ('colorful ', 'grayscale ', 'orange ' or 'blue ')
write.png.color colorful

The PNG background Hex RGB value (e.g. 0xFFFFFF), or 'transparent '
write.png.bg transparent

Smooth the PNG image
write.png.smooth halfbeam

Enable bicubic spline interpolation for non -pixelized , smooth , PNG
output

#write.png.spline

Crop the PNG to specific bounds (arcsec)
write.png.crop -60,-60,60,60

Allow using gnuplot (e.g. for skydip plots). Requires a gnuplot
installation

to work ...
gnuplot

If gnuplot is not in youtr path , you gen specify the full path to the
gnuplot executable instead of the above:
#gnuplot /usr/bin/gnuplot

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
79

SOF-US-HBK-OP10-2008
Rev. A

Options for laboratory data reduction 'lab ' mode. depending on
instrument

support , these can bypass astrometry and telescope dtaa altogether

Enable lab mode recution
#lab

Set an assumed scanning speed (arcsec/s) for adjusting filter
parameters

If not set , CRUSH will assume 10 beams/s.
#lab.scanspeed 100

Various modifications to configurations for 'lab ' mode reductions
[lab] blacklist source
[lab] blacklist filter.motion
[lab] blacklist tau
[lab] blacklist whiten
[lab] blacklist shift
[lab] blacklist point
[lab] forget downsample
[lab] write.spectrum

You can use the virtual option 'derive ' to derive new pixeldata files.
It will invoke the following settings conditionally , as well as any
similar conditional settings based on brightness and/or the instrument
configuration ...
[derive] forget pixeldata ,vclip ,aclip
[derive] write.pixeldata
[derive] blacklist whiten
[derive] rounds 30

If the 'source.flatfield ' option is set , then load appropriate settings
for flatfield determination ...
[source.flatfield] config flatfield.cfg

Always sync the source model if writing timestreams , spectra , or
covariances

[write.ascii] blacklist source.nosync
[write.spectrum] blacklist source.nosync
[write.covar] blacklist source.nosync

Some convenient aliases:
the keys 'altaz ', 'horizontal ', 'radec ', 'equatorial ', 'ecliptic ', '

galactic '
and 'supergalactic ' are defined. E.g.,
#
> ./ crush [...] -galactic [...]
#
can be used to produce maps in galactic coordinates
#

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
80

SOF-US-HBK-OP10-2008
Rev. A

alias.altaz system horizontal
alias.horizontal system horizontal
alias.equatorial system equatorial
alias.radec system equatorial
alias.ecliptic system ecliptic
alias.galactic system galactic
alias.supergalactic system supergalactic
alias.focalplane system focalplane

'final ' is a shorthand for iteration .[last]. This can be used , for
example

to specify a map smoothing at the end of reduction. On the command line
an example of this would look like:
#
> ./ crush [...] -final:smooth=beam [...]
#
Note , that the colon (:) is used as a separator between the alias and

the
conditional setting on the command -lines , because spaces are not

allowed.
#
alias.final iteration .[last]

Some shorthand for iteration -based settings
alias.i iteration
alias.i1 iteration .[1]
alias.i2 iteration .[2]
alias.i3 iteration .[3]

Some aliases for better backward compatibility (esp. with minicrush)
alias.center pointing
alias.time -weighting weighting.frames
alias.planetary moving
alias.reservecpus idle
#alias.extfilter source.filter
#alias.scanmap -redundancy source.redundancy
#alias.scanweighting source.weighting
#alias.scanmap -despike source.despike
#alias.relative -noise -range weighting.noiserange
#alias.rcpgains source.fixedgains

Always reduce the Moon as 'bright '
object .[Moon] bright

invoke the appropriate brightness configuration when one of the
brightness

options is set...
[bright] config bright.cfg
[faint] config faint.cfg
[deep] config deep.cfg

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
81

SOF-US-HBK-OP10-2008
Rev. A

C Appendix: Required Header Keywords

The file below defines all keywords that the HAWC pipeline checks for validity before
proceeding. It is normally located in the hawc distribution at hawc/pipeline/config/-
header req config.txt. The path to this file should be specified in the pipeline configuration
file under the ‘[checkhead]’ section in order to perform the header check.

HAWC pipeline header requirements configuration file
#
Keywords in this list are only those required for successful
data reduction (grouping and processing). There may be more
keywords required by the SOFIA DCS.
#
Requirement value should be *, chopping , nodding , dithering ,
or scanning (as denoted by the corresponding FITS keywords).
* indicates a keyword that is required for all data. All
others will only be checked if they are appropriate to the
mode of the input data.
#
DRange is not required to be present in the configuration --
if missing , the keyword will be checked for presence only. If
drange is present , it will be checked for an enum requirement
first; other requirements are ignored if present. Min/max
requirements are only used for numerical types , and are inclusive
(i.e. the value may be >= min and <= max).
#
2016 -08 -22 Melanie Clarke: First version

[CHOPPING]
requirement = *
dtype = bool

[CHPAMP1]
requirement = chopping
dtype = float
[[drange]]

min = -1125
max = 1125

[CHPANGLE]
requirement = chopping
dtype = float
[[drange]]

min = -360
max = 360

[CHPCRSYS]
requirement = chopping
dtype = str

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
82

SOF-US-HBK-OP10-2008
Rev. A

[[drange]]
enum = TARF , ERF , SIRF

[CHPFREQ]
requirement = chopping
dtype = float
[[drange]]

min = 0.0
max = 20.0

[CHPONFPA]
requirement = chopping
dtype = bool

[DATE -OBS]
requirement = *
dtype = str

[DITHER]
requirement = *
dtype = bool

[DTHINDEX]
requirement = dithering
dtype = int
[[drange]]

min = 0

[DTHSCALE]
requirement = dithering
dtype = float

[DTHXOFF]
requirement = dithering
dtype = float

[DTHYOFF]
requirement = dithering
dtype = float

[EQUINOX]
requirement = *
dtype = float

[EXPTIME]
requirement = *
dtype = float
[[drange]]

min = 0.0

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
83

SOF-US-HBK-OP10-2008
Rev. A

[FOCUS_EN]
requirement = *
dtype = float
[[drange]]

min = -5000.0
max = 5000.0

[FOCUS_ST]
requirement = *
dtype = float
[[drange]]

min = -5000.0
max = 5000.0

[HWPSTART]
requirement = nodding
dtype = float
[[drange]]

min = -360.0
max = 360.0

[INSTCFG]
requirement = *
dtype = str
[[drange]]

enum = TOTAL_INTENSITY , POLARIZATION

[INSTMODE]
requirement = *
dtype = str
[[drange]]

enum = C2N (NMC), OTFMAP

[INSTRUME]
requirement = *
dtype = str
[[drange]]

enum = HAWC_PLUS

[MCEMAP]
requirement = scanning
dtype = str

[NHWP]
requirement = nodding
dtype = int
[[drange]]

min = 1

[NODDING]

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
84

SOF-US-HBK-OP10-2008
Rev. A

requirement = *
dtype = bool

[NODPATT]
requirement = nodding
dtype = str
[[drange]]

enum = ABBA , A

[OBJECT]
requirement = *
dtype = str

[OBS_ID]
requirement = *
dtype = str

[PIXSCAL]
requirement = nodding
dtype = float
[[drange]]

min = 0.0

[SIBS_X]
requirement = *
dtype = float

[SIBS_Y]
requirement = *
dtype = float

[SMPLFREQ]
requirement = *
dtype = float
[[drange]]

min = 1.0

[SPECTEL1]
requirement = *
dtype = str
[[drange]]

enum = HAW_A , HAW_B , HAW_C , HAW_D , HAW_E

[SPECTEL2]
requirement = *
dtype = str
[[drange]]

enum = NONE , HAW_HWP_A , HAW_HWP_B , HAW_HWP_C , HAW_HWP_D ,
HAW_HWP_E , HAW_HWP_Open , HAW_HWP_Offset1 , HAW_HWP_Offset2 ,
HAW_HWP_Offset3

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
85

SOF-US-HBK-OP10-2008
Rev. A

[SRCTYPE]
requirement = *
dtype = str
[[drange]]

enum = POINT_SOURCE , COMPACT_SOURCE , EXTENDED_SOURCE , OTHER ,
UNKNOWN

[TELDEC]
requirement = *
dtype = float
[[drange]]

min = -90.0
max = 90.0

[TELRA]
requirement = *
dtype = float
[[drange]]

min = 0.0
max = 24.0

[UTCSTART]
requirement = *
dtype = str

[WAVECENT]
requirement = *
dtype = float
[[drange]]

min = 0.0

VERIFY THAT THIS IS THE CORRECT REVISION BEFORE USE
86

	5196.pdf
	Vann

