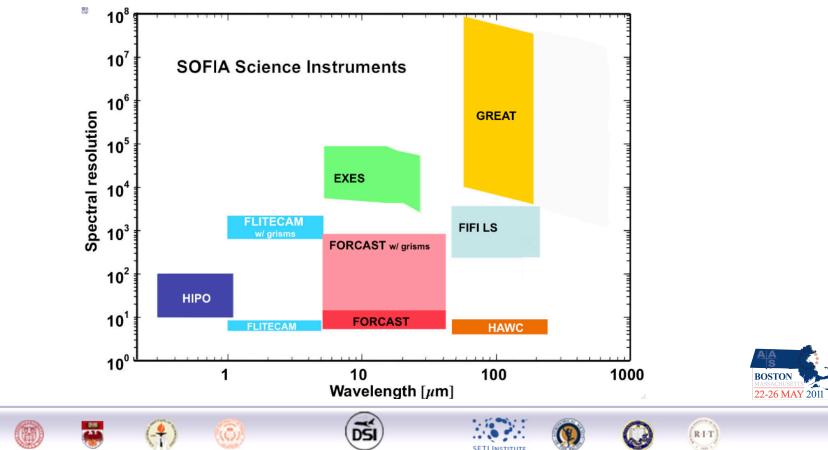


SOFIA's Suite of **First-Generation Science Instruments**

John Vaillancourt SOFIA Science Center / USRA

SOFIA Splinter Session 2011 May 23 218th AAS Meeting, Boston

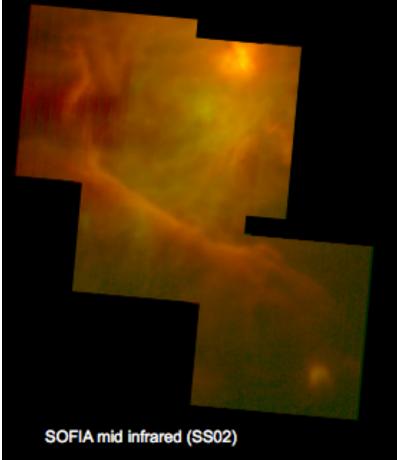
(C):



SOFIA's Instrument Complement

The 7 first-generation instruments cover the full IR range with imagers and low-to-high resolution spectrographs

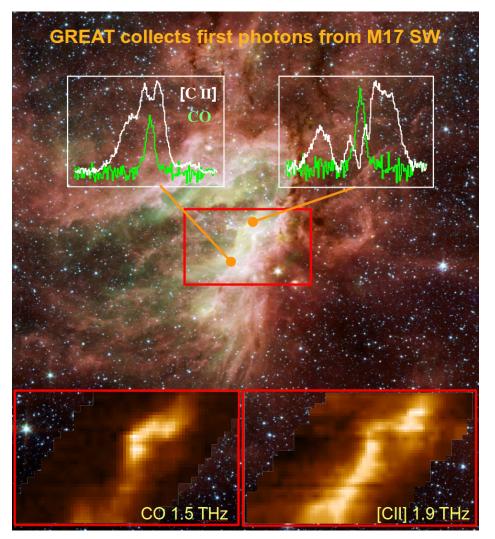
(<u>http://www.sofia.usra.edu/Science/instruments/</u>) see also Gehrz et al. 2011 (arXiV:1102.1050)



FORCAST (PI: Terry Herter, Cornell)

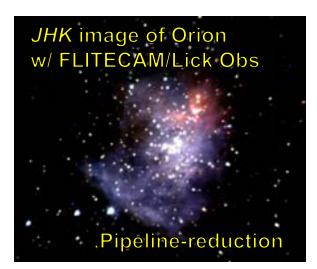
- Mid-IR imager with both short- and long-wavelength detector arrays (5 – 24 µm, 9 filters; 31 – 38 µm, 4 filters)
- 3.2 × 3.2 arcmin field of view
- ~ 3 arcsec FWHM resolution
- First-light in Dec. 2010, Basic Science began May 2011; instrument performance as expected
- planned upgrade for detector arrays
- FORCAST grism mode planned:
 - $R = \lambda / \Delta \lambda \sim 200 1200$
 - available late 2012

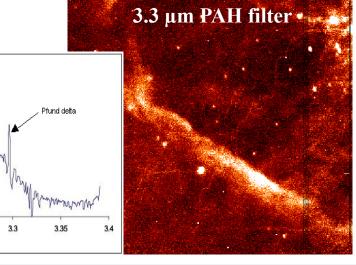
DŜI

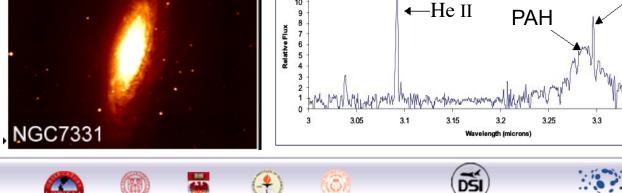

 $(\mathbf{\bar{o}})$

GREAT (PI: Rolf Güsten, MPIfR-Bonn)

- Dual-channel heterodyne spectrometer
- 2 Backend options:
 - CTS: 200 MHz b-width, $\Delta v = 50$ kHz - AOS: 1.5 GHz b-width, $\Delta v = 1$ MHz - new XFFT \rightarrow 2.5 GHz bandwidth
- L#1 (1.25 1.50 THz; 200 240 $\mu m)$
- L#2 (1.82 1.92 THz; 156 165 μm)
- Mid-freq.: 2.4 2.7 THz (110 125 μm) – centered on HD(1-0) and OH (²Π_{3/2}) – June 2011 integration
- High-freq.: 4.6 4.8 THz (62 65 μm)
 e.g., [O I] at 63 μm

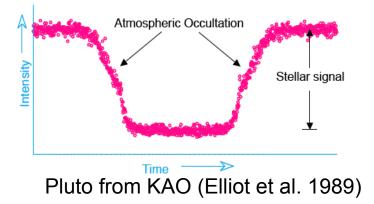


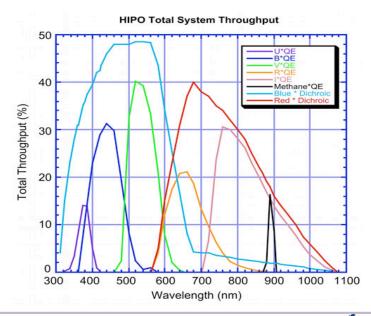



FLITECAM (PI: Ian McLean, UCLA)

NGC2027

- A Facility-class camera at 1 5 μm
- Seeing/diffraction limited (3" 5"), 8 arcmin FOV
- Filters: *J, H, K, L, M*, PAH, Water-ice, Pa-α, Pa-contin.
- Grisms: R ~ 2000 across 1 5 µm band, 1" & 2" slits
- FLITECAM is complete, has been field-tested on 3-m telescope at Lick observatory
- 1st test flights Fall 2011
- Imaging & spectroscopy modes available 2012

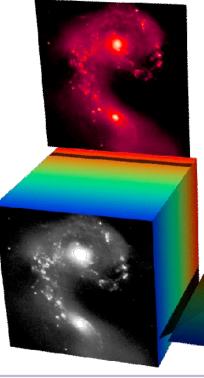



HIPO (PI: Ted Dunham, Lowell Obs.)

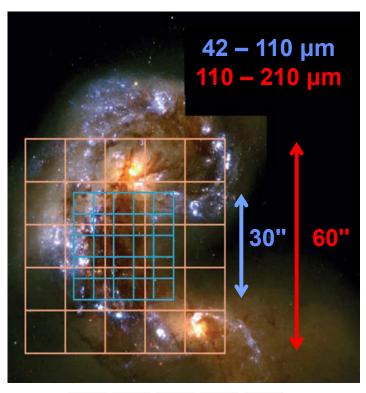
DŚI

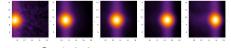
- High Speed Imaging Photometer for Occultations
- science goals include occultations by solar-system objects; possibility of extrasolar planet transits
- simultaneous dual-color imaging
 - $-0.3-0.7~\mu m$ and $0.4-1.1~\mu m$ ranges
 - UBVRI and custom filters
- co-mounts with FLITECAM (3rd color in NIR)
- 5.6 × 5.6 arcmin FOV, 1024² pixels
- Flexible layout supports future modifications
- Working/complete
- Flight tests this summer, including a planned Pluto occultation

 $(\mathbf{\bar{o}})$



- Integral field-unit spectrometer, 5×5 spatial pixels, 16 spectral pixels
- Two (simultaneous) channels: Blue & Red
 - Spatial resolution: 7" 12" & 16" 24"
 - $\lambda/\Delta\lambda \sim 1200 4000 \& 1000 2000$




- Move MPE → IRS / Stuttgart: June 2011
- Integration tests through 2012
- Commissioning on SOFIA 2013

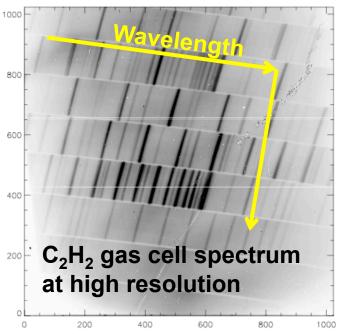
DSI

Output format is a data cube: $X \times Y \times \lambda$

(B)

Scan of 108 μ m point-source

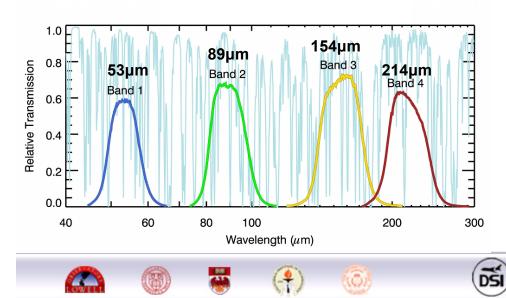
EXES (PI: Matt Richter, U. Calif.-Davis)

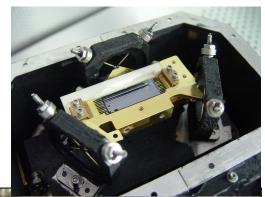

DŜI

- Designed primarily to study gas phase using
 - molecular ro-vibration bands that provide multiple energy levels in single observation
 - kinematic information that resolves structure and multiple components
- High spectral resolution in mid-IR: 4.5 28.4 μm
 - R = 50,000 120,000 cross-dispersed
 - In single observation:
 - ~0.7% with ~30" long slit, echelle X-disperser
 - ~5% with ~2" long slit, low-order X-disperser

3

- Single order long slit (~100" long)
 - R = 3,000 with 5% coverage
 - R = 20,000 with ~0.7% coverage
- Instrument Status: testing in the lab
- General availability: Cycle 2





- Four passbands at 53, 89, 154, and 214 $\mu m,$ $\Delta\lambda/\lambda$ ~ 0.2
- Diffraction limited resolution: 5 20 arcsec FWHM
- 12 × 32 pixel detector array, FOV ~ 0.5 4 arcmin
- All cryogenic systems successfully tested in lab
- Final (non-cryogenic) optics are being fabricated
- Final pre-ship full-system test to be conducted summer 2011
- Commissioning 2012 / 2013

SOFIA's First-Generation Instruments

(http://www.sofia.usra.edu/Science/instruments/)

see also Gerhz et al. 2011 (arXiV:1102.1050)

Instrument	Туре	λλ (μm)	νν (THz)	Resolution	PI
FORCAST (in operation)	imager / (grism)	5.4 - 37	8.1 - 56	filters / (R~2000)	T. Herter / Cornell U.
GREAT (H-Freq.) (M-freq June 2011) (L-freq.'s operating)	heterodyne spectrometer	(62 - 65) (110 - 125) 156 - 165 200 - 240	(4.6 - 4.8) (2.4 - 2.7) 1.82 - 1.92 1.25 - 1.50	R ~ 10 ⁴ - 10 ⁸	R. Güsten / MPlfR
HIPO (summer 2011)	fast imager	0.3 - 1.1		filters	E. Dunham / Lowell Obs.
FLITECAM (summer 2011)	imager / (grism)	1.0 - 5.5		filters / (R~2000)	I. McLean / UCLA
FIFI-LS	imaging grating spectrograph	42 - 110 110 - 210	2.7 - 7.1 1.4 - 2.7	R ~1000 - 2000	Poglitsch,Krabbe /MPE,IRS
EXES	imaging echelle spectrograph	4.5 - 28.4	10.6 - 67	R ~ 3000 - 10 ⁵	M. Richter / UC-Davis
HAWC	imager	45 - 270	1.1 - 6.6	filters	D. A. Harper / U. Chicago

 (\blacksim)

 $(\mathbf{\bar{O}})$

(R-I-T)