Physical conditions in dense molecular knots in the supernova remnant Cassiopeia A

Sofia Wallström
Onsala Space Observatory

In collaboration with C. Biscaro, O. Berné, J. Black, I. Cherchneff, S. Muller, J. Rho, F. Salgado, A. Tielens

Dust in supernovae

- Large dust masses seen in galaxies at z > 6
 - $-M > 10^8 M_{\odot}^{(1)}$
- Short timescale to produce this dust
 - Supernovae!
- But only small amounts of dust seen a few years post-SN
 - 10⁻⁵ to 10⁻² M_o from IR observations⁽²⁾
 - Predictions of 0.1 to 1 M_☉ per SN⁽³⁾

⁽²⁾e.g. Lucy et al. 1989, Sugerman et al. 2006

⁽³⁾e.g. Todini & Ferrara 2001, Cherchneff & Dwek 2010

Dust in supernova remnants

- Larger cold dust masses in SNRs
 - About 0.1 M_☉ in Cas A⁽¹⁾
 - $-0.4 \text{ to } 0.7 \text{ M}_{\odot} \text{ in SN87A}^{(2)}$
- But not yet reprocessed by the reverse shock
 - Shock velocity ~1000 km/s
 - Models estimate dust destruction up to 100%⁽³⁾

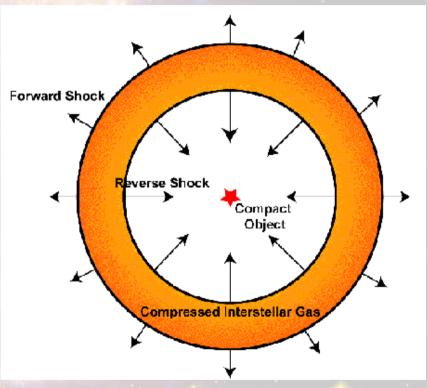
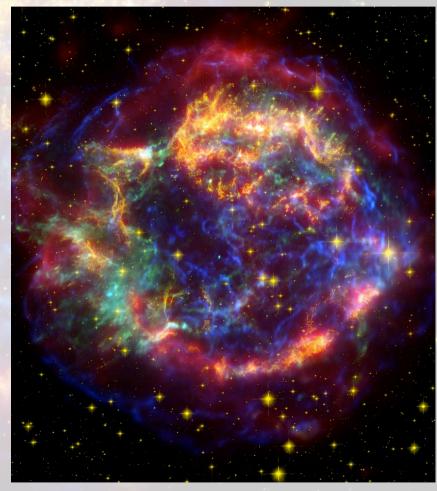


Image credit: NASA's HEASARC

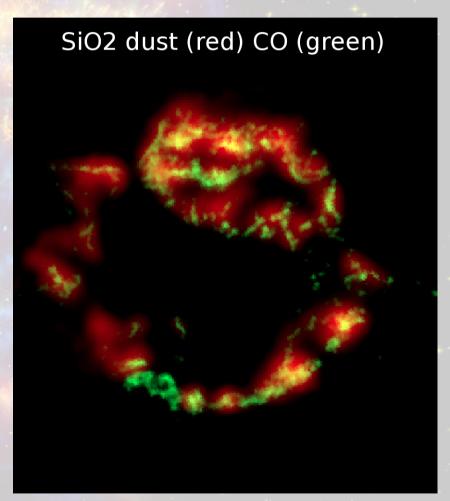
⁽²⁾Matsuura et al. 2011


⁽³⁾e.g. Nozawa et al. 2007

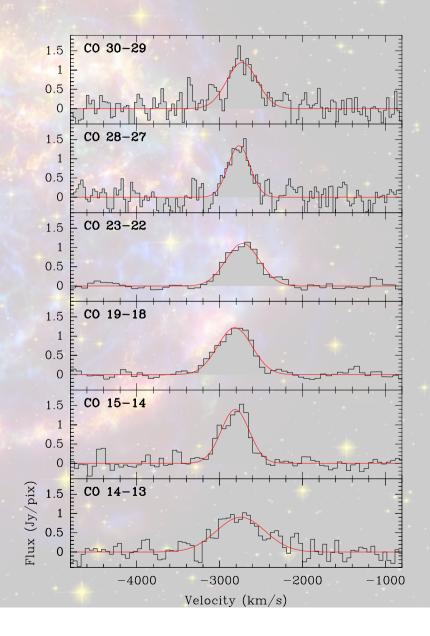
Dense ejecta knots

- Rayleigh-Taylor instabilities following SN explosion
 - Ejecta highly inhomogeneous: dense knots
- Dense knots promote formation of molecules and dust growth
 - High density also slows reverse shock
 - ~200 km/s shock does limited damage to dust(1)

Cassiopeia A


- 330 years old SNR
- Distance 3.4 kpc
- Large dust masses
 - − 0.025 M_☉ warm dust⁽¹⁾
 associated with reverse
 shock
 - − 0.075 M_☉ unshocked cold dust⁽²⁾

⁽²⁾Barlow et al. 2010


Cassiopeia A

- Ro-vibrational CO detected⁽¹⁾
 - In many small (<0.8")knots
 - Coincident with reverse shock
- Difficult to derive physical conditions

Herschel PACS observations

- Brightest CO knot targeted in several rotational CO lines⁽¹⁾
- Blueshift of -2800 km/s
- Broad lines ~400 km/s
- Physical conditions:
 - Large column density (10¹⁹ cm⁻²)
 - Dense (10⁵ to 10⁶ cm⁻³)
 - Warm (500-1000 K)

CO knots in Cas A

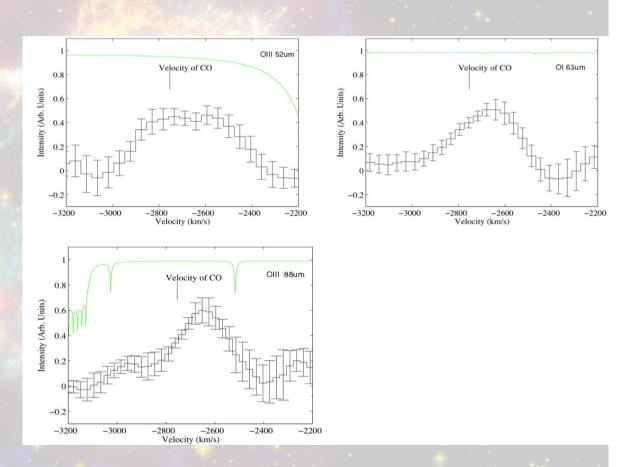

- CO most likely in post-reverse-shock region
- Large column density of warm gas indicates an additional heating source
 - UV photons from the shock front and diffuse X-ray flux both insufficient
 - Electron conduction from the surrounding plasma
 - Balanced by evaporation from surface of knot

After Herschel

- Still want to study
 - Characteristics of pre- and post-shock gas
 - Interrelationship of molecular and neutral/ionic atomic gas
 - The role of heat condution by electrons
 - The possible role of molecular knots in protecting
 SN dust

SOFIA Cycle 2

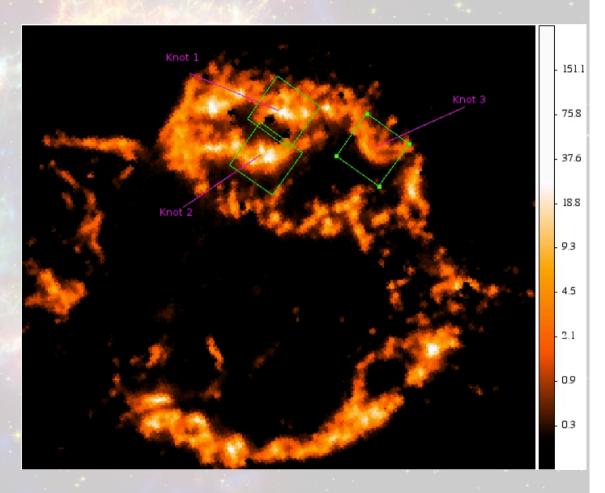
- Cycle 2 SOFIA
 observations with
 FIFI-LS
- Perfect for our broad lines (~400 km/s) and spatial variation
- I got to fly with SOFIA in April 2014!



SOFIA Cycle 2 observations

- [OIII] at 88 and 52 μm and [OI] 63 μm
 - [OIII] 88 μm detected with Herschel
 - Various critical densities to disentangle contribution from
 - lower density pre-shock photoionized zone
 - higher density post-shock photoionized zone
 - E.g. [OI] 63 μm has critical density of 10⁵ cm⁻³,
 tracing the dense post-shock gas and may be a main coolant of this gas

SOFIA cycle 2 observations


- Only preliminary results – but short integration times (~3min)
- Still needs to be corrected for atmospheric transmission and flux calibrated

Telluric absorption calculated by RATRAN shown in green

SOFIA Cycle 3


- Follow-up
 observations in
 Cycle 3
- Targeting the same lines at 3 CO positions in Cas A

 $4.5~\mu m$ Spitzer map of ro-vibrational CO emission in Cas A (Rho et al. 2009)

Summary

- Dense molecular knots in Cas A important for SNR impact and evolution
 - Study interplay with neutral/ionic gas
- Promising preliminary
 Cycle 2 SOFIA data;
 excited for Cycle 3 data!

Color image of Cas A, with CO 2-0 overtone emission at 2.3 μ m in red, K-continuum in green and P β in blue (Rho et al. 2009)