

Spectral Mapping with FIFI-LS and GREAT

Randolf Klein

USRA FIFI-LS Instrument Scientist

SOFIA Workshop, May 2015

Spectral Mapping

Spectral Mapping results in a 3D-data cube

- P-V-diagrams
- Line intensity maps
- Velocity maps

Instruments

- FIFI-LS Direct detection, 51 203 µm Grating spectrometer offering medium spectral resolution: R=500...2000 Integral Field Unit
- GREAT Heterodyne Receivers, High spectral resolution, R<10⁷
 On-the-fly mapping
 Cycle 4 configurations: L1/L2, L2/H
 - L1: 1.25-1.52 THz / 240-197 μm
 - L2: 1.81-1.91 THz / 166-157µm, incl. [CII]
 - H: 4.7448 THz / 63.1837 μm [OI]

FIFI-LS

- Far-infrared spectrometer employing two parallel channels operating simultaneously:
- Blue 51-120 μm

5x5 pixel field of view: 6" per spatial pixel

- Red 115-203 μm 5x5 pixel field of view: 12" per spatial pixel
- Imaging spectrometer concept
- Each channel: 5x5 spatial pixels
- 16 spectral pixels per spatial pixels
- Spectral resolution: R=500-2000

Integral Field Concept

DLR

USRA

2D detector^S C5Atams 3D data cube

M82

Central 700 pc

OI

CII

Sill

Science Case

- Mapping of FIR fine structure lines in galactic and extra galactic sources. -21
- Main cooling lines of the T_a interstellar gas in the ່ຮູ **FIFI-LS** range:
- [CII] 158µm
- [OI] 63.18µm, 145.4µm
- In ionized regions:
- [OIII] 51.81µm, 88.36µm
- But also high-J CO lines, OH-lines etc.

USRA

1000

M82 – [CII] 158µm

Time Estimate: M82

- Expected flux eg. from KOA, ISO, or Herschel observations
- Here from Herschel PACS-S: Central 2'x2' with PACS-S Contursi et al. A&A 549, A118 (2013)
- Expected integrated line flux for [CII]: [C II] 158µm
 ~2x10⁻¹⁷ W/m² per PACS-S₄₂ or spaxel in outer regions
- PACS-S spaxel is 9.7"x9.7"
- FIFI-LS red spaxel: 12"x12" -> 1.5 times larger 30"
- Expected flux per FIFI-LS_{9° 40' 00"} spaxel: 3x10⁻¹⁷ W/m²

FIFI-LS Time Estimator

Input Parameters

https://atran.sofia.usra.edu/cgi-bin/fifi-ls/fifi.cgi

FIFI-LS Time Estimator

SOFIA Workshop

FIFI-LS Time Estimator

List of parameters inserted:		
Observatory Altitude (in feet; < 60000 ft):	38000 ft	
Water Vapor Overburden (in microns; 0 if un	nknown): 0	
Telescope elevation (between 20 and 60 de	g): 40	
Signal to Noise Ratio / Integration Time (s)	: 5 SNR	
Wavelength (in microns, between 40 and 200	0): 157.741	
Source :	3e-17 line (in W/m^2)	
Velocity correction (source VLSR, in km/s):	219	
Band width :	1500 km/s	
List of parameters derived:		
Velocity corrected wavelength (in microns):	157.856	Inter-
Plot wavelength range (in microns):	157.054 - 158.659	madiate
Interpolated values from data table :	MDLF = 2.085e-17 (W/m^2);	mencare
	MDCF = 0.570 (Jy);	resuus
	bandwidth = 0.802 (microns);	
	I = 1.000	
Atmospheric transparency :	alpha = 0.775	
Integration time :	t_on = 18.870 minutes	Result

MDL/CF: minimum detectable line/continuum flux (4 σ in 15 t_{on})

Mapping

- t_{on}=19min
- Consider overlap: 3x3 map positions spacing of ½ a red array or 30" or 2.5 pixels (super-resolution)-> Map size 2'x2' in red
 - Corners covered once -> SNR: 2.9
 - Sides covered 3x -> SNR: 5
 - Center covered 9x -> SNR: 8.7
- t_{on}=19min coverage, i.e. SNR of 5, in sides.
 3x3 raster map Therefore 19/3=6.3min on-source time, per position
 -> 9x6.3=57min or 3420s total on-source time.
- Symmetric Chop -> overhead: x1.7 or 97min Total time: 154+5 min or 9534s (SPT)
- Blue map full coverage, no overlap Let's assume that 6.3min per position is sufficient for a blue pointing.

2015-05-21

SOFIA Workshop

Sofia Proposal Tool (SPT)

Observation 1: M82 of Phase I Proposal 04_0013 (testsubmission)				
Instrument:	FIFI-LS			
Target Name:	M82			
Source Type:	Sidereal	*	SIMBAD 🗹 NED 🗌	
NAIF ID:	NAIF ID Selection List	*		
Coordinates:	Galactic 📄 RA/GalLong: 9 55 52.43	DEC/GalLat: 69	40 46.93	
Proper Motion ("/yr):	RA: 0	DEC: 0		
Instrument Mode:	SYMMETRIC_CHOP Overheads -	Constant (secs): 300.0	+ Factor: 1.7	
Wavelengths (microns):	Blue Channel: 52	Red Channel: 158		
Width of Spectrum (km/s):	Blue Channel: 1500	Red Channel: 1500	total	
Integration Time (secs):	Alternate Overhead: 0	Default Overhead: 6114.0	Duration: 9534.0	
Map Area:	arcmin	arcmin		
indep in eac	2.0	X 2.0		
Order of Observation:	1			
Priority:	Medium 💠			
Time Critical Observation:				
First Critical Time, From :		То:		
Second Critical Time, From :		То:		

The [OI] 63µm line

FIFI-LS Observing Modes

- Symmetric Chop (see example) With matched nod -> symmetric off-positions Max chop throw θ < 5' for λ<120µm & θ < 4' for λ < 63µm Overhead: 170% (assumes long integration times)
- Asymmetric Chop Needs reference position Overhead: 430% (assumes long integration times)
- Bright Object Asymmetric chop with two on-positions per nod-cycle Overhead: 500% (assumes $t_{on} \approx 5s$)
- Spectral Scan (*shared risk*!) Several microns wide spectral features

Data Cube of M42

Fluxer http://hera.ph1.uni-koeln.de/~ciserlohe/Fluxer/fluxer.html

SOFIA Workshop

GREAT – M17-SW

- Example: 3'x4' on-the-fly map of M17-SW
- [C II] at 1900.5369 GHz (157.7 μm)
- ¹²CO J=13–12 at 1496.9229 GHz (200.3 μm)
- Continuously taking data while moving over the source
- 6 strips, 224" long, 4× 8"=32" high
- 8" sampling (half beam at 1.9 THz). -> 28 points per line

J.P. Prez-Beaupuits et al. A&A 542, L13 (2012)

GREAT – M17-SW

- 1s integration per point -> 8"/s scanning speed
- Scan should not exceed 60s
- Reference position $\sqrt{28s} \approx 5s$
- One line -> 28s+5s=33s
- 4x6=24 lines
- Total integration time: 24x33s=792s
- 100% + 2min overhead (SPT) .
 1704s (28min)
- Time estimator:
 1s x 1km/s -> ~3K rms
- No repeat of map necessary.

J.P. Pérez-Beaupuits et al. A&A 542, L13 (2012)

GREAT SPT

Observation 1: M17 SW of Phase I Proposal 04_0013 (testsubmission) Instrument: GREAT Target Name: M17 SW Sidereal SIMBAD 🗹 Source Type: NED [NAIF ID Selection List NAIF ID: ÷ Galactic RA/GalLong: 18 20 23.10 DEC/GalLat: -16 11 43.00 Coordinates: RA: 0 DEC: 0 Proper Motion ("/yr): Spectral Element 2 Configuration Spectral Element 1 Instrument: GRE_L2 DUAL CHANNEL GRE_H ÷ ÷ ÷ Bandpass L1: 4744.8 Bandpass L2: 1900.5 Frequencies (GHz): Velocity (Km/s): -20 Reference Frame LSR OTFMAP_PSW + Factor: 1.0 Instrument Mode: ÷ Overheads - Constant (secs): 120.0 Integration Time (secs): 792 Alternate Overhead: 0 Default Overhead: 912.0 Duration: 1704.0 on arcmin arcmin Map Area: 3 X 4 Order of Observation: Low ÷ Priority: Time Critical Observation: To: First Critical Time, From :

To:

Second Critical Time, From :

upGREAT

- Low frequency array (LFA)
- 7 pixel array both polarizations (currently only one polarization at a time)
- Current tuning range: 1.9005 ± 0.003 THz [CII] line ± 500km/s
- 7 (maybe both pol.) pixel each more sensitive than L2 -> ~ order of magnitude more efficient mapping than GREAT L2 Currently on SOFIA for commissioning
- Cycle 4 combination: LFA/L1
 L2/H may be replaced by LFA/H
- Stay tuned for updates on June 8

Approx. beam pattern and scanning directions

upGREAT mapping example

SOFIA Workshop