

Polarimetry with HAWC+ on SOFIA John Vaillancourt

Polarized Light from the ISM

• Light is polarized at most wavelengths, from X-ray to Radio.

Polarization Mechanisms

Synchrotron Radiation

Polarization Mechanisms

Synchrotron Radiation

Diagrams adapted from A. Goodman: http://cfa-www.harvard.edu/~agoodman/ppiv/

- Why is FIR light from ISM polarized
 - interstellar dust dust grains are aligned with respect to magnetic field
- Two main goals of FIR polarimetry are:
 - constrain the effect of *B*-fields on ISM evolution
 - study the physics of dust grains, and interaction with Bfields

Inferring Field Strength – CF'53

[Davis 1951, Chandrasekhar & Fermi 1953]

$$V_A^2 \left\langle \frac{\partial y}{\partial x} \right\rangle^2 = \left\langle \frac{\partial y}{\partial t} \right\rangle^2$$
$$\sqrt{\frac{B_0}{4\pi\rho}} = \frac{\sigma(v)}{\sigma(\Phi)}$$

 $\sigma(\Phi)$ = angle dispersion ρ = gas density $\sigma(v)$ = velocity dispersion B_0 ~ few microGauss

Interstellar Clouds

Shu et al. 1987, ARA&A, 25, 23 Galli & Shu. 1993, ApJ, 417, 220 Galli & Shu. 1993, ApJ, 417, 243 Fiedler & Mouschovias. 1993, ApJ, 415, 680 Crutcher 2006, Science, 313, 771

Davidson et al. 2011, ApJ, 732, 97 Allen et al. 2003, ApJ, 599, 363

- Magnetic Fields in the ISM
 - Do they regulate shape, collapse, flows?
 - What are relative energy/pressure contributions from components: *gravity, thermal, magnetic, turbulent*
 - Supernova remnants. Polarization at 850 μm has significant contributions from both dust and synchrotron.

SOFIA Observers Workshop 20+21 May 2015

- Different wavelengths trace different types of dust and hence different regions of clouds.
 - Optical data traces diffuse ISM, FIR/MM traces denser parts of cloud and cores. Do they yield same B-field orientation? How does existence of cloud alter mean Galactic field?
 - Short FIR wavelengths trace dust and *B*-field close to warm cores
 - Long FIR wavelengths trace dust and *B*-field in cooler cloud edges

Polarization vs. Density

Multiple Pol'n Mechanisms

outer envelope dust envelope opacity gap compactity gap dust dust dust destruction front shock protostar compactive precursor Kwon et al. 2009 Stahler & Palla 2004

> Where in cloud is light polarized? Where in cloud is polarization tracing the magnetic field. These questions require multiwavelength data to answer.

Polarization Spectra

 Histograms off all previous measurements at single-dish telescopes at 60 – 850 μm

Polarization Spectra

Polarization Spectra

Planck Collaboration XIX 2015

- Two detector arrays (64×40 pixels) simultaneously measure both components of linear polarization. Components are *Reflected* and *Transmitted* off a polarizing wire grid.
- Five different passbands from $50 250 \mu m$. Each passband is diffraction limited with a plate scale that Nyquist samples the beams
- Rotatable half-wave plates are used to rotate plane of polarization. HWPs are matched to each passband.

0.2

0.0 40

60

80

Passbands	А	В	С	D	E
Mean λ (μm)	53	63	89	154	214
Δλ/λ	0.17	0.15	0.19	0.22	0.20
FWHM (arcsec)	4.7	5.8	7.8	14	19
FOV (arcmin)	2.7×1.7	4.2×2.6	4.2×2.6	7.3×4.5	8.0×6.1

100

Wavelength (μ m)

200

300

HAWC+ Observing Mode

1) Chop-Nod

- Nod parallel to chop, symmetric only
- Chop amp. 2–8 arcmin, freq. 5–20 Hz
- 2) Rotate Half-waveplate (HWP)
 - Step in 4–8 positions/angles (0°-180°)
 - Repeat chop-nod sequence at each HWP angle
- 3) Dithering
 - Repeat Chop-Nod and HWP sequences at all dither positions
- 4) Mapping
 - Repeat Dither, HWP, and Chop-Nod sequences at all map positions

Polarimetry requires at least 4 separate photometric measurements. (1 chop-nod) \times (4 HWP) \times (4 dithers) \sim 15–30 minutes minimum observing time.

Sensitivity & Time Estimates

$$\sigma_p = \frac{\sqrt{2}}{\eta_p} \frac{\sigma_I}{I} t^{-1/2} \times 100\%$$

 σ_p : polarization uncertainty I: Total intensity or flux σ_I : Total intensity or flux uncertainty η_p : Instrument polarization efficiency t: total integration time (not per HWP!)

Passbands	Α	В	С	D	E	
Mean λ (μ m)	53	63	89	154	214	SITE input
MDCPF (% · Jy)	9.0	11	9.4	7.7	6.7	← for point
MDCPF with overheads	28	36	30	24	21	source

- MDCPF: **M**inimum **D**etectable **C**ontinuum **P**olarized **F**lux is the quantity $I \cdot \sigma_p$ into a single HAWC beam with for S/N=4 in a 15 minute integration
- "with overheads" is the MDCPF taking into account inefficiences in chopping, nodding, missing/dead detectors, etc.

Sensitivity & Time Estimates

$$\sigma_p = \frac{\sqrt{2}}{\eta_p} \frac{\sigma_I}{I} t^{-1/2} \times 100\%$$

 σ_p : polarization uncertainty *I*: Total intensity or flux σ_I : Total intensity or flux uncertainty η_p : Instrument polarization efficiency *t*: total integration time (not per HWP!)

Passbands	Α	В	С	D	E	
Mean λ (μm)	53	63	89	154	214	SITE input for extended source
NESB (% · Jy · arcsec ⁻²)	0.36	0.30	0.14	0.037	0.017	
MIfP (MJy / sr)	20,000	17,000	7600	2100	940	

- NESB: Noise Equivalent Surface Brightness, S/N=4, 15 minutes
- MIfP (**M**inimum Intensity for Polarization): This is the minimum surface brightness required if one wishes to measure a polarization uncertainty $\sigma_p = 0.3\%$ in a one-hour integration. The value here includes all overheads.

Sensitivity & Time Estimates

$$\sigma_p = \frac{\sqrt{2}}{\eta_p} \frac{\sigma_I}{I} t^{-1/2} \times 100\%$$

 σ_p : polarization uncertainty *I*: Total intensity or flux σ_I : Total intensity or flux uncertainty η_p : Instrument polarization efficiency *t*: total integration time (not per HWP!)

• Point source (nominal spatial profile) with spatially integrated brightness	9.4	Jy ‡
Polarization	1.0	Percent

Note: SITE requests both intensity I and polarization p, but only their product is used in the calculation. The returned/entered S/N is p/σ_p .

As usual, time scales inversely as the square of desired uncertainty, in this case the uncertainty on the polarized intensity pI.

$$t = (900 \,\text{sec}) \left(\frac{\text{MDCPF}}{4 \,\sigma_p \,I}\right)^2$$

Other Uncertainties

- Uncertainty on the polarization angle for $p \succ 3\sigma_p$

$$\sigma_{\phi} = \frac{180}{\pi} \frac{\sigma_p}{2p} \quad \text{[degrees]}$$

- Instrument & Telescope polarization
 - subtracted to better than ${\sim}0.3\%$
 - position angle to within 2 degrees

Observation Planning

- HAWC+ has 2 observing configurations
 - TOTAL_INTENSITY: unpolarized mapping (discussed by J. DeBuizer)
 - POLARIZATION: mapping in polarization, discussed here
- C2N (NMC) mode: 2-point chop with matching nod and dithering
 - may include optional mosaic mapping

Observation Planning

- Mosaic Mapping: Consider your key goal
 - Do large maps (> 8 arcmin) really need best possible resolution (5" @ 2 amin FOV) ?
 - Do maps at multiple wavelengths need exact same coverage?
 - Do all map sub-fields require same integration time?
- Example: 63 μm band has only slightly larger beam than 53 μm band, but better sensitivity and 2.4 times larger FOV

Polarized Reference Beams

• Beware flux in your reference beams

- Total Intensity:
 - even if reference flux cannot be avoided, it always subtracts from source flux
 - There exist many large-scale maps in FIR for planning to avoid reference flux (e.g. IRAS, *Herschel, Spitzer*)
- Polarized Intensity:
 - polarization angle differences between reference and source can lead to subtraction or addition (Schleuning+ 1997, PASP, 109, 307; Novak+ 1997, ApJ, 487, 320)
 - No large-scale FIR polarization maps.
 Maybe some combo. FIR intensity surveys and *Planck* 850 µm data
 - Best solution: find the dimmest total intensity region possible, use larger chop throws, repeat measurement w/ different ref. region

Polarized Reference Beams

- Polarized Intensity:
 - polarization angle differences between reference and source can lead to subtraction *or addition*
 - Fractional polarization often *increases* as total intensity drops. So no guarantee very dim reference regions are devoid of polarization.

"polarization holes" in regions of high intensity and column density (e.g., Schleuning 1998, Matthews+ 2002)

Planning with Planck & Herschel, caveats

- HAWC bandwidths are narrow
 - $\ \lambda/\Delta\lambda\sim 5-6.$
- Herschel bandwidths are wider
 - $\ \lambda/\Delta\lambda\sim 3.$

polarized intensity and B-orientation

- Planck at 850 µm
 - published data plotted at 1 degree resolution for *B*-vectors
 - native resolution ~ 5 arcmin
- Herschel bandwidths are wider - $\lambda/\Delta\lambda \sim 3$.

USRA

SOFIA Probes Intermediate Scales

USRA

SOFIA Probes Intermediate Scales

HAWC+ @ 53 μm : 2 arcmin FOV, 5 arsec resolution HAWC+ @ 214 μm : 7 arcmin FOV, 20 arcsec resolution

Polarization Across Wavelengths

Further Reading

- HAWC in Molt, On the Way to Becoming SOFIA's Facility Far-IR Camera and Polarimeter: <u>http://www.sofia.usra.edu/Science/SCF/pdf/08-06-14_Dowell.pdf</u>
- Dust and Polarization in the Interstellar Medium: <u>http://www.sofia.usra.edu/Science/SCF/pdf/10-17-12_Vaillancourt.pdf</u>
- The HAWC Upgrade Investigation: <u>http://www.sofia.usra.edu/Science/SCF/pdf/11-28-12_Dowell-Staguhn.pdf</u>
- Polarimetry with SOFIA: <u>http://spirit.as.utexas.edu/~dan/SOFIAteletalk/sofiateletalkarchive/</u> <u>12-16-09_Novak-Dowell.ppt</u>
- Far-infrared polarimetry from the SOFIA: <u>http://www.sofia.usra.edu/Science/instruments/HAWC-SPIEs/2007SPIE.</u> <u>6678.66780D.pdf</u>
- Far-infrared Polarimetry of The Interstellar Medium: <u>http://dx.doi.org/10.1051/eas/1152042</u>
- New Insights into the Physics of Infrared Cirrus: <u>http://www.sofia.usra.edu/Science/science_cases/dowell_v2.pdf</u>
- Magnetic Fields, Turbulence, and Star Formation: <u>http://www.sofia.usra.edu/Science/science_cases/novak_v2.pdf</u>

