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Exo-planets and the Astrophysical Time 
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planet Radius vs. Wavelength 
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Purpose of this Talk:  Helping You Write a 
Compelling SOFIA Proposal for Precision Time-

Domain Observations 

•  Science requires SOFIA-unique observations 
–  Describe why ground-based or HST WFC3 won’t do the job 

•  SOFIA instrument performance is adequate to distinguish 
competing models 
–  Show that you understand systematic limits as well as raw SNR 

•  Observations with timing constraints are not unduly expensive 
to execute 
–  $ cost of deployment and one-off instrument setups 
–  Opportunity cost of science missions not flown because of flight 

time or $ expended on special event observations 

So you can show that 

This talk is NOT about Solar System eclipses and occultations for which 
SOFIA’s mobility is essential regardless of instrument used 
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Overview 

•  Example Science Topics 
•  Introducing HIPO, FLITECAM, FLIPO, and FPI+ 
•  Strawman Performance Requirements 
•  SOFIA Performance 
•  Constraints and Costs of fixed-time Event 

Scheduling 



4 SOFIA Observer’s Workshop (Van Cleve) 5/21/2015 

Precision (Spectro) Photometry Science  

•  Exoplanet Atmospheric Characterization 
–  Transmission 

•  Strawman Requirements 
–  Reflection 
–  Non-thermal equilibrium emission 
–  Spatial variability 
–  Temporal variability (weather) 

•  Asteroseismology 
•  Astrophysics 

–  Flares 
–  Starspots 
–  Rotation Rate 
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Introducing Relevant SOFIA Science Instruments 

•  HIPO -  High Speed Imaging Photometer for Occultation (HIPO), 
two simultaneous optical wavelengths 
–  Many specialized readout modes for transient events 

•  FLITECAM - infrared camera/spectrograph operating in the 1.0 
µm < λ < 5.5 µm with spectral resolution up to ~1000 

•  FLIPO – simultaneous HIPO and FLITECAM mounted as one SI 
•  FPI+ –  standard tracking camera for the SOFIA telescope with 

science grade CCD sensor 
–  Can be paired with any other SI (including FLIPO) 
–  One optical wavelength 

•  Other Instruments – not considered here since precision 
photometry (< 1000 ppm) not possible given lower SNRs and 
residual thermal background variation 

See earlier talks and Handbook for details 
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Photometric Precision Terms 

•  PP = Photometric precision.  Usually multiplied by 106 to get 
ppm in exoplanet work 

•  SNR = signal-to-noise in the absence of systematic errors 
–  This is what SITE will calculate for you 

•  LPP = Limiting photometric precision.  The system cannot do 
better than this regardless of integration time or source flux.   
–  Understanding/reduction requires capture of “instrument state 

vector” = engineering HK and derived image properties 
–  Kepler primary mission LPP < 30 ppm 

•  PP = sqrt(1/SNR2 + LPP2) 
•  Adding 1/SNR and LPP in quadrature is questionable since 

the noise sources contributing to LPP are typically neither 
white nor stationary 



7 SOFIA Observer’s Workshop (Van Cleve) 5/21/2015 

Photometric Performance Requirements Model 

•  Effective radius of planet varies with λ since light is absorbed more strongly 
at some λ than at others 

•  Sa = annulus of absorption relative to stellar area 
–  Blue in cartoon is where (for example) water absorbs but other gases do not 
–  Would like Sa/PP > 5 

•  Rp = radius of planet 
•  R* = radius of star 
•  H = scale height of atmosphere  

Sa ~ 5
2RpH
R*
2
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Barstow (2014) Fig. 3 Spectra for a 
single hot Jupiter primary transit 

Absorpton Band Annulus simplified and exaggerated Cartoon 

planet Radius vs. Wavelength 

Tinetti, 2013 
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Photometric Peformance Requirements Results 
 

Look for SOFIA-specific opportunities where PP >= 300 ppm can do 
the science 
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SOFIA Optical Photometric Performance 

•  HIPO:   LPP was demonstrated in-flight to be ~150 ppm 
(Dunham et al. 2014).  
–  This is about the same as state-of-the-art ground-based VIS 

photometry (Nascimbeni et al., 2013)  
–  Case for HIPO and FPI+ is Observatory mobility or simultaneity 

with IR wavelengths not accessible from ground  
•  FPI+:  photon shot-noise limited down to 350 ppm for stars at 

least as bright as GJ1214 (R mag = 13.8) 
–  LPP may be < 350 ppm but not yet demonstrated 
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SOFIA Near-IR Photometric Performance  
• FLITECAM Imaging:  photon shot-noise limited down to 1800 
ppm in 15 min 

–  Power spectrum white down to 1 mHz = 15 min so expect LPP < 
1800 ppm, not yet demonstrated 

–  Bean et al. (2011) obtained a PP < 450 ppm in K band 
photometry of GJ1214b, well above the shot noise limit 

•   “… the highest-precision ground-based near-infrared transit light 
curve data that we are aware of.” 

–  J, H, and K photometry which require LPP >1000 ppm are not 
making good use of SOFIA compared to skilled ground-based 
photometry 

• FLITECAM Spectroscopy:  LPP not demonstrated < 104 ppm 
–  But 1% is much better than the ground can do at water bands! 
–  FLITECAM Grism calculator predicts adequate SNR > 1000 in 1 

hr if you can bin spectral elements to increase SNR by sqrt(Δλ/
λ) à match rebinned resolution to absorption width 
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Flight Planning Constraints and Costs of fixed-time 
Event Scheduling 

 •  SOFIA is neither fixed to the Earth’s surface or in a well-
defined orbit, so flight planning has unique features 
–  Direction telescope is pointing defines direction aircraft is 

pointing 
–  Aircraft is moving 560 mph in direction it’s pointing (hope so!) 
–  Position of aircraft on Earth changes apparent position of target 
–  Aircraft generally has to return to the same place it took off from 

•  Flight Planning white paper 
http://www.sofia.usra.edu/Science/observing/
flightPlanning_whitePaper.pdf 

•  BG Andersson presentation earlier in this workshop 
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Flight Duration Constraints and Costs 
•  Aircraft has to take off and land from the same base 

–  Palmdale or Christchurch 
•  Flights are 10.0 h with 2.0 h required to climb/descend, set up 

telescope, and turn 
•  4.0 h available for an uninterrupted observation 

–  Very difficult to do over Western CONUS because of restricted 
airspace 

–  In practice, 3.0 h legs leave enough azimuthal freedom to 
schedule other targets, and have actually been scheduled 

•  Legs up to 8.0 h possible if aircraft lands somewhere besides 
where it takes off 
–  Logistical loss of at least one other science flight 
–  Science would have to be extraordinary and SOFIA-specific 
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Series Schedulability Risk and Costs 
•  The Cycle Scheduler (CS) tool approximates SOFIA as a 

fixed location  
•  CS aggregates available SOFIA flight dates for efficiency into 

single-instrument flight series  
•  If Cycle 4 is like Cycle 3, weak demand for other HIPO/

FLITECAM/FLIPO targets will give one or two week-long flight 
series in the entire Cycle. 

•  Hence your target has to have an event in a limited number of 
available nights if it is not to force an otherwise unneeded 
instrument change, which will cost as least one other science 
flight 

•  Extra thermal emission in FLIPO reduces FLITECAM SNR at 
λ > 2.2 µm for other people’s science 
–  Effectively imposes a cost in extra observing time or a lost flight 

to switch to FLITECAM-only mode 
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Single-Event Schedulability Random Phase Approximation 
(LRPA)  

•  probability that a transit of period P begins in a time interval Δt is Δt/P.   
•  SOFIA flight has tf ~ 8.0 hr useful hours.  Uninterrupted total time 

interval needed ttot = transit duration d + time before ingress Δi + time 
after egress Δe 

•  the time available in a flight for a transit to start is tf – ttot 
•  the probability that this happens on a flight date is (tf – ttot)/P 
•  the probability pfs that this will happen at least once in a flight series of 

nser nights in a season is  

pfs =1− 1−
t f − ttot
P
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To have a >50% chance of scheduling a transit, given nser = 5 
and ttot = 1.5 hr, you need P < 50 h   

Ttot = 1.5 hr, 5 night series 
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Consider in Your Proposal 
•  How the science depends critically on wavelengths where 

SOFIA is superior to the ground and HST WFC3 (λ > 1.7 µm) 
•  Whether you can do the science with only one optical 

wavelength at a low frame rate (< 4 Hz), simultaneous with your 
near-IR data  
–  If 2 or more optical colors or high-speed sampling are critical you 

will need the FLIPO configuration 
•  The minimum amount of time you need before and after the 

event 
•  Whether the science can be done with a partial event 
•  Why SOFIA’s estimated photometric precision is adequate 
•  If there’s a target of interest opposite the Galactic Center (16h < 

RA < 20h, DEC > +60), a chronically undersubscribed region 
–  3+ hr chunks of time often available before/after GC legs 
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BACKUP SLIDES 
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Photometric Precision Forward Sums for SOFIA 

!

•  Time series correction algorithms preserve transit 
•  Error-corrected time series are white over range analyzed 

Data from Angerhausen, Dreyer et al, in prep  
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Multi-Event LRPA  

•  If m observable events of the same object must occur within 
the same flight series 

pfs (≥m) =
nser !

n!(nser − n)!
t f − ttot
P
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