

Exo-planets and the Astrophysical Time Domain with HIPO, FLIPO, and FPI+

Wavelengin (and)

planet Radius vs. Wavelength

Jeffrey Van Cleve

with data analysis and review by HIPO, FPI+, and FLITECAM Teams and exoplanet PI Daniel Angerhausen

Purpose of this Talk: Helping You Write a Compelling SOFIA Proposal for Precision Time-Domain Observations

So you can show that

- Science requires SOFIA-unique observations
 - Describe why ground-based or HST WFC3 won't do the job
- SOFIA instrument performance is adequate to distinguish competing models
 - Show that you understand systematic limits as well as raw SNR
- Observations with timing constraints are not unduly expensive to execute
 - \$ cost of deployment and one-off instrument setups
 - Opportunity cost of science missions not flown because of flight time or \$ expended on special event observations

This talk is NOT about Solar System eclipses and occultations for which SOFIA's mobility is essential regardless of instrument used

Overview

- Example Science Topics
- Introducing HIPO, FLITECAM, FLIPO, and FPI+
- Strawman Performance Requirements
- SOFIA Performance
- Constraints and Costs of fixed-time Event Scheduling

Precision (Spectro) Photometry Science

- Exoplanet Atmospheric Characterization
 - Transmission
 - Strawman Requirements
 - Reflection

JSRA

- Non-thermal equilibrium emission
- Spatial variability
- Temporal variability (weather)
- Asteroseismology
- Astrophysics
 - Flares
 - Starspots
 - Rotation Rate

Introducing Relevant SOFIA Science Instruments

- HIPO High Speed Imaging Photometer for Occultation (HIPO), two simultaneous optical wavelengths
 - Many specialized readout modes for transient events
- FLITECAM infrared camera/spectrograph operating in the 1.0 μ m < λ < 5.5 μ m with spectral resolution up to ~1000
- FLIPO simultaneous HIPO and FLITECAM mounted as one SI
- FPI+ standard tracking camera for the SOFIA telescope with science grade CCD sensor
 - Can be paired with any other SI (including FLIPO)
 - One optical wavelength
- Other Instruments not considered here since precision photometry (< 1000 ppm) not possible given lower SNRs and residual thermal background variation

See earlier talks and Handbook for details

Photometric Precision Terms

- PP = Photometric precision. Usually multiplied by 10⁶ to get ppm in exoplanet work
- SNR = signal-to-noise in the absence of systematic errors
 - This is what SITE will calculate for you
- LPP = Limiting photometric precision. The system cannot do better than this regardless of integration time or source flux.
 - Understanding/reduction requires capture of "instrument state vector" = engineering HK and derived image properties
 - Kepler primary mission LPP < 30 ppm
- $PP = sqrt(1/SNR^2 + LPP^2)$
- Adding 1/SNR and LPP in quadrature is questionable since the noise sources contributing to LPP are typically neither white nor stationary

Photometric Performance Requirements Model

- Effective radius of planet varies with λ since light is absorbed more strongly at some λ than at others
- S_a = annulus of absorption relative to stellar area
 - Blue in cartoon is where (for example) water absorbs but other gases do not
 - Would like $S_a/PP > 5$
- R_p = radius of planet
- R_{*} = radius of star
- H = scale height of atmosphere

SOFIA Observer's Workshop (Van Cleve) 5/21/2015

Photometric Peformance Requirements Results

	hot	hot	hot H-He	warm wate
Planet type	Jupiter	Jupiter	Neptune	Neptune
R_p (km)	69200	69200	24500	24500
R_p/R_J	1.00	1.00	0.35	0.35
T_p (k)	1300	1300	1300	550
m (kg)	2.35E-03	2.35E-03	3.00E-03	1.80E-02
g (m/s^2)	17.4	17.4	11	11
H (km)	263.9	263.9	327.0	23.1
5*H (km)	1319.4	1319.4	1634.8	115.3
R_*	0.25	0.5	0.25	0.25
R_p/R_*	0.40	0.20	0.14	0.14
transit depth	15.84%	3.96%	1.99%	1.99%
atmos signal	6040.0	1510.0	2649.7	186.8
Required PP	1208.0	302.0	529.9	37.4

Look for SOFIA-specific opportunities where PP >= 300 ppm can do the science

SOFIA Optical Photometric Performance

- HIPO: LPP was demonstrated in-flight to be ~150 ppm (Dunham et al. 2014).
 - This is about the same as state-of-the-art ground-based VIS photometry (Nascimbeni et al., 2013)
 - Case for HIPO and FPI+ is Observatory mobility or simultaneity with IR wavelengths not accessible from ground
- FPI+: photon shot-noise limited down to 350 ppm for stars at least as bright as GJ1214 (R mag = 13.8)
 - LPP may be < 350 ppm but not yet demonstrated

SOFIA Near-IR Photometric Performance

•FLITECAM Imaging: photon shot-noise limited down to 1800 ppm in 15 min

- Power spectrum white down to 1 mHz = 15 min so expect LPP < 1800 ppm, not yet demonstrated
- Bean et al. (2011) obtained a PP < 450 ppm in K band photometry of GJ1214b, well above the shot noise limit
 - "... the highest-precision ground-based near-infrared transit light curve data that we are aware of."
- J, H, and K photometry which require LPP >1000 ppm are not making good use of SOFIA compared to skilled ground-based photometry

•FLITECAM Spectroscopy: LPP not demonstrated < 10⁴ ppm

- But 1% is much better than the ground can do at water bands!
- FLITECAM Grism calculator predicts adequate SNR > 1000 in 1 hr if you can bin spectral elements to increase SNR by sqrt(Δλ/ λ) → match rebinned resolution to absorption width

Flight Planning Constraints and Costs of fixed-time Event Scheduling

- SOFIA is neither fixed to the Earth's surface or in a welldefined orbit, so flight planning has unique features
 - Direction telescope is pointing defines direction aircraft is pointing
 - Aircraft is moving 560 mph in direction it's pointing (hope so!)
 - Position of aircraft on Earth changes apparent position of target
 - Aircraft generally has to return to the same place it took off from
- Flight Planning white paper <u>http://www.sofia.usra.edu/Science/observing/</u> <u>flightPlanning_whitePaper.pdf</u>
- BG Andersson presentation earlier in this workshop

Flight Duration Constraints and Costs

- Aircraft has to take off and land from the same base
 - Palmdale or Christchurch
- Flights are 10.0 h with 2.0 h required to climb/descend, set up telescope, and turn
- 4.0 h available for an uninterrupted observation
 - Very difficult to do over Western CONUS because of restricted airspace
 - In practice, 3.0 h legs leave enough azimuthal freedom to schedule other targets, and have actually been scheduled
- Legs up to 8.0 h possible if aircraft lands somewhere besides where it takes off
 - Logistical loss of at least one other science flight
 - Science would have to be extraordinary and SOFIA-specific

Series Schedulability Risk and Costs

- The Cycle Scheduler (CS) tool approximates SOFIA as a fixed location
- CS aggregates available SOFIA flight dates for efficiency into single-instrument flight series
- If Cycle 4 is like Cycle 3, weak demand for other HIPO/ FLITECAM/FLIPO targets will give one or two week-long flight series in the entire Cycle.
- Hence your target has to have an event in a limited number of available nights if it is not to force an otherwise unneeded instrument change, which will cost as least one other science flight
- Extra thermal emission in FLIPO reduces FLITECAM SNR at λ > 2.2 µm for other people's science
 - Effectively imposes a cost in extra observing time or a lost flight to switch to FLITECAM-only mode

Single-Event Schedulability Random Phase Approximation (LRPA)

- probability that a transit of period P begins in a time interval Δt is $\Delta t/P$.
- SOFIA flight has $t_f \sim 8.0$ hr useful hours. Uninterrupted total time interval needed t_{tot} = transit duration d + time before ingress Δ_i + time after egress Δ_e
- the time available in a flight for a transit to start is $t_f t_{tot}$
- the probability that this happens on a flight date is $(t_f t_{tot})/P$
- the probability p_{fs} that this will happen at least once in a flight series of n_{ser} nights in a season is

 T_{tot} = 1.5 hr, 5 night series

n - 1 - 1	/ 1_	t_f –	t_{tot}	n_{ser}
$P_{fs} - 1 -$		P)	

ofs		Period	
	0.98	-	12
	0.78		25
	0.50	Ľ	50
	0.29	10	00
	0.15	20)0

To have a >50% chance of scheduling a transit, given $n_{ser} = 5$ and $t_{tot} = 1.5$ hr, you need P < 50 h

Consider in Your Proposal

- How the science depends critically on wavelengths where SOFIA is superior to the ground and HST WFC3 ($\lambda > 1.7 \mu m$)
- Whether you can do the science with only one optical wavelength at a low frame rate (< 4 Hz), simultaneous with your near-IR data
 - If 2 or more optical colors or high-speed sampling are <u>critical</u> you will need the FLIPO configuration
- The minimum amount of time you need before and after the event
- Whether the science can be done with a partial event
- Why SOFIA's estimated photometric precision is adequate
- If there's a target of interest opposite the Galactic Center (16h < RA < 20h, DEC > +60), a chronically undersubscribed region
 - 3+ hr chunks of time often available before/after GC legs

BACKUP SLIDES

SOFIA Observer's Workshop (Van Cleve) 5/21/2015

References

- Barstow, J. K., et al. (2014), "Exoplanet atmospheres with EChO: spectral retrievals using EChOSim," <u>http://arxiv.org/abs/1405.3579</u>
- Bean, J. L. et al. (2013), "The Optical And Near-infrared Transmission Spectrum Of The Super-earth Gj 1214b: Further Evidence For A Metal-rich Atmosphere," <u>http://arxiv.org/abs/1109.0582</u>
- Danielski, C., et al. (2014), "0.94-2.42 µm Ground-based Transmission Spectra of the Hot Jupiter HD-189733b," Ap J 785, 35.
- Dunham et al. (2014). "HIPO in-flight performance improvements," SPIE 9147-16.
- Nascimbeni et al (2013). "The blue sky of GJ3470b: the atmosphere of a low-mass planet unveiled by ground-based photometry," *A&A* **559**.
- Pont, F. et al. (2008), "Detection of atmospheric haze on an extrasolar planet: the 0.55-1.05 µm transmission spectrum of HD 189733b with the Hubble Space Telescope," MNRAS 385, 109.
- Sing et al., "Hubble Space Telescope Transmission Spectroscopy of the Exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-UV with STIS," MNRAS, **416**, 1443
- Stevenson et al. (2014), "Thermal structure of an exoplanet atmosphere from phaseresolved emission spectroscopy," accepted for publication in *Science* http://arxiv.org/ abs/1410.2241
- Tinetti, G., Encrenaz, T. & Coustenis, A. (2013), "Spectroscopy of planetary atmospheres in our Galaxy." The Astron. Astrophys Review, **21**, 63.

Photometric Precision Forward Sums for SOFIA

Data from Angerhausen, Dreyer et al, in prep

Multi-Event LRPA

 If *m* observable events of the same object must occur within the same flight series

$$p_{fs}(\ge m) = \sum_{n=m}^{n_{ser}} \frac{n_{ser}!}{n!(n_{ser}-n)!} \left(\frac{t_f - t_{tot}}{P}\right)^n \left(1 - \frac{t_f - t_{tot}}{P}\right)^{n_{ser}-n}$$