Examining Pluto's atmosphere with SOFIA through stellar occultations

Principal Investigator
Michael Person
Proposal ID
01_0101
Category
SOLAR SYSTEM
Keywords
  • PLANETARY ATMOSPHERES
  • SUPPORT OF NASA PLANETARY MISSIONS

Abstract

We propose to use SOFIA with HIPO, FLITECAM (subject to availability), and the FDC to observe two pairs of Pluto stellar occultations (four total), attempting in each case to observe from the center of Pluto's shadow path. Only an airborne platform such as SOFIA can allow us to directly place the telescope in the shadow paths of these brief events while mitigating the possibility of missing time-sensitive observations due to unfortunate weather systems. Occultation predictions will be updated throughout the period preceding the observations with the goal of achieving sufficient prediction accuracy at the event time to place SOFIA directly in the path of Pluto's central flash. Successful central flash observations will give us unprecedented information regarding Pluto's lower atmospheric structure and global sphericity. The combination of HIPO, FLITECAM, and the FDC will allow us to make simultaneous visible and IR measurements of the occultation light curves in several wavelengths, which are needed to differentiate between two currently competing explanations for the deficiency in the observed light refracted from Pluto's lower atmosphere (strong thermal gradients versus variable particulate extinction). Finally, we propose for two pairs of events in order to investigate the temporal variability of Pluto's atmosphere on several timescales to measure its ongoing evolution due to Pluto's rotation, changing seasonal obliquity (and resulting ice migration), and recession from the sun. These SOFIA observations will all be combined with our ground-based observing program to provide calibrating geometric information to the SOFIA occultation chords, allowing us to precisely pinpoint the actual passage of SOFIA through the occultation shadow path. Given the upcoming New Horizons encounter with the Pluto system in 2015, now is a critical time to provide context and supporting atmospheric information to this NASA mission.