Multi-band Tractor Forced Photometry and Redshifts in the CDFS and XMM-LSS Fields

Kristina Nyland ^(D), ¹ Mark Lacy ^(D), ² W.N. Brandt ^(D), ^{3,4,5} Guang Yang ^(D), ^{6,7} Qingling Ni ^(D), ⁸ Anna Sajina ^(D), ⁹ Fan Zou ^(D), ^{3,4} and Mattia Vaccari ^(D)

¹U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA ²National Radio Astronomy Observatory, Charlottesville, VA 22903, USA

autonai nauto Astronomy Observatory, Chartottesvitte, VA 22903, USA

³Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA

⁴Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA ⁵Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA

⁶Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA

Department of Thysics and Astonomy, Texas ACM University, Conege Station, TA Trofs-4242, USA

⁷George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA

⁸Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ, UK

⁹Department of Physics and Astronomy, Tufts University, Medford, MA, 02155, USA

¹⁰Department of Astronomy, University of Cape Town, 7701 Rondebosch, Cape Town, South Africa

ABSTRACT

We present a catalog of multi-band forced photometry in the CDFS and XMM-LSS fields. We used *The Tractor* image-modeling software to produce de-blended photometry across 13 to 15 optical/infrared bands and determine photometric redshifts. Our catalog, which is publicly available on IRSA, contains ~1.5 million sources and covers a total area of ~9 deg².

BACKGROUND

Wide-field surveys are essential for characterizing basic galaxy properties such as redshift, stellar mass, and nuclear activity level. This requires accurate photometry across heterogeneous combinations of mixed-resolution surveys. Here, we present multi-band forced photometry using *The Tractor* (Lang et al. 2016) over 9 deg² in the CDFS and XMM-LSS fields. *The Tractor* employs position/shape priors from a high-resolution image and flexible PSF modeling to fit the source flux and shape properties in lower-resolution bands. Compared to position-matched catalogs, *The Tractor* produces de-blended *Spitzer*/IRAC fluxes that lead to more accurate photometric redshifts (Nyland et al. 2017).

DATA PRODUCTS

Our photometry includes the 3.6 and 4.5 μ m Spitzer/DeepDrill (Lacy et al. 2021) bands; ground-based near-infrared data in the Z, Y, J, H, and Ks bands from VIDEO (Jarvis et al. 2013); and optical data in the g, r, i, and z bands from HSC (Miyazaki et al. 2012). In CDFS, deep archival HSC data are used (Ni et al. 2019), and in XMM-LSS, data from the HSC-SSP (Aihara et al. 2018) are used. In CDFS, the u, g, r, and i bands from VOICE (Vaccari et al. 2016) are included. In XMM-LSS, we also include u'-band data from CFHTLS (Gwyn 2012). The main differences between this study and Nyland et al. (2017) are (1) an increased image cutout size (20") for improved extended source photometry and (2) iterative sigma clipping for image background statistics. For XMM-LSS, we limited the catalog to Ks < 23, as described in Krefting et al. (2020).

Photometric redshifts have been estimated for all sources, regardless of the SNR, and are taken directly from Chen et al. (2018) and Zou et al. (2021). The catalog is described in Table 1 and is publicly available on IRSA (Nyland, et al. 2023). Our catalog expands upon published studies using *The Tractor* by our team for the XMM-LSS field (Krefting et al. 2020), sources in CDFS and XMM-LSS detected in X-ray surveys (Chen et al. 2018; Zou et al. 2021; Ni et al. 2021; Zou et al. 2022), and faint sub-millimeter galaxies in XMM-LSS (Patil et al. 2019).

 Table 1. Catalog description

Name	Description	Name	Description
ra	J2000 position	$red_chi_Z_VIDEO$	VIDEO Y-band $\chi^2_{\rm red}$
dec	J2000 position	red_chi_Y_VIDEO	VIDEO Z-band $\chi^2_{\rm red}$
field	XMM-LSS or CDFS	red_chi_I_HSC	HSC <i>i</i> -band $\chi^2_{\rm red}$
F_Ks_VIDEO	VIDEO Ks -band flux	red_chi_R_HSC	HSC <i>r</i> -band $\chi^2_{\rm red}$
F_H_VIDEO	VIDEO H -band flux	$red_chi_G_HSC$	HSC g-band $\chi^2_{\rm red}$
F_J_VIDEO	VIDEO J -band flux	$red_chi_Z_HSC$	HSC z-band $\chi^2_{\rm red}$
F_Y_VIDEO	VIDEO Y -band flux	red_chi_Y_HSC	HSC Y-band $\chi^2_{\rm red}$
F_Z_VIDEO	VIDEO Z -band flux	red_chi_I_VOICE	VOICE <i>i</i> -band $\chi^2_{\rm red}$
F_I_HSC	HSC <i>i</i> -band flux	red_chi_R_VOICE	VOICE <i>r</i> -band χ^2_{red}
F_R_HSC	HSC r -band flux	red_chi_G_VOICE	VOICE g-band $\chi^2_{\rm red}$
F_G_HSC	HSC g -band flux	red_chi_U_VOICE	VOICE <i>u</i> -band χ^2_{red}
F_Z_HSC	HSC z-band flux	red_chi_U_CFHT	CFHTLS u'-band $\chi^2_{\rm red}$
F_Y_HSC	HSC Y-band flux	red_chi_CH1	DeepDrill [3.6] χ^2_{red}
F_I_VOICE	VOICE <i>i</i> -band flux	red_chi_CH2	DeepDrill [4.5] χ^2 ,
F_R_VOICE	VOICE r -band flux	skvlevel_Ks_VIDEO	VIDEO Ks-band skylevel
F G VOICE	VOICE a -band flux	skylevel H VIDEO	VIDEO <i>H</i> -band skylevel
F_U_VOICE	VOICE y -band flux	skylevel_J VIDEO	VIDEO J-band skylevel
F U CEHT	CENTLS u' -band flux	skylevel Z VIDEO	VIDEO Y-hand skylevel
F CH1	DeepDrill [3.6] flux	skylevel Y VIDEO	VIDEO Z-band skylevel
F CH2	DeepDrill [4.5] flux	skylevel I HSC	HSC <i>i</i> band skylevel
F orr Ke VIDEO	VIDEO Ke band flux error	skylevel B HSC	HSC <i>r</i> band skylevel
F or H VIDEO	VIDEO H hand flux error		HSC a band skylevel
F orr I VIDEO	VIDEO I band flux error	skylevel Z HSC	HSC g band skylevel
F_en_J_VIDEO	VIDEO V hand flux error	skylevel_Z_HSC	HSC Z-band skylevel
	VIDEO 7 - band nux error	skylevel_1_HSC	
F_err_Z_VIDEO	VIDEO Z-band flux error	skylevel_L_VOICE	VOICE <i>i</i> -band skylevel
F_err_L_HSC	HSC <i>i</i> -band flux error	skylevel_R_VOICE	VOICE <i>r</i> -band skylevel
F_err_R_HSC	HSC <i>r</i> -band flux error	skylevel_G_VOICE	VOICE g -band skylevel
F_err_G_HSC	HSC g -band flux error	skylevel_U_VOICE	VOICE u -band skylevel
F_err_Z_HSC	HSC z-band flux error	skylevel_U_CFHT	CFHTLS u'-band skylevel
F_err_Y_HSC	HSC Y-band flux error	skylevel_CH1	DeepDrill [3.6] skylevel
F_err_I_VOICE	VOICE i -band flux error	skylevel_CH2	DeepDrill [4.5] skylevel
F_err_R_VOICE	VOICE r -band flux error	skynoise_Ks_VIDEO	VIDEO Ks -band skynoise
F_err_G_VOICE	VOICE g -band flux error	skynoise_H_VIDEO	VIDEO <i>H</i> -band skynoise
F_err_U_VOICE	VOICE u -band flux error	skynoise_J_VIDEO	VIDEO <i>J</i> -band skynoise
F_err_U_CFHT	CFHTLS u' -band flux error	skynoise_Z_VIDEO	VIDEO Y-band skynoise
F_err_CH1	DeepDrill [3.6] flux error	skynoise_Y_VIDEO	VIDEO Z -band skynoise
F_err_CH2	DeepDrill [4.5] flux error	skynoise_I_HSC	HSC i -band skynoise
Mag_Ks_VIDEO	VIDEO Ks -band magnitude	$skynoise_R_HSC$	HSC r -band skynoise
Mag_H_VIDEO	VIDEO H -band magnitude	$skynoise_G_HSC$	HSC g -band skynoise
Mag_J_VIDEO	VIDEO J -band magnitude	skynoise_Z_HSC	HSC z -band skynoise
Mag_Y_VIDEO	VIDEO Y-band magnitude	$skynoise_Y_HSC$	HSC Y -band skynoise
Mag_Z_VIDEO	VIDEO Z -band magnitude	$skynoise_I_VOICE$	VOICE i -band skynoise
Mag_I_HSC	HSC i -band magnitude	$skynoise_R_VOICE$	VOICE r -band skynoise
Mag_R_HSC	HSC r -band magnitude	$skynoise_G_VOICE$	VOICE g -band skynoise
Mag_G_HSC	HSC g -band magnitude	$skynoise_U_VOICE$	VOICE u -band skynoise
Mag_Z_HSC	HSC z -band magnitude	$skynoise_U_CFHT$	CFHTLS u' -band skynoise
Mag_Y_HSC	HSC Y -band magnitude	skynoise_CH1	DeepDrill [3.6] skynoise
Mag_I_VOICE	VOICE i -band magnitude	skynoise_CH2	DeepDrill [4.5] skynoise
Mag_R_VOICE	VOICE r -band magnitude	snr_Ks_VIDEO	VIDEO Ks-band SNR
Mag_G_VOICE	VOICE g -band magnitude	snr_H_VIDEO	VIDEO <i>H</i> -band SNR
Mag_U_VOICE	VOICE <i>u</i> -band magnitude	snr_J_VIDEO	VIDEO <i>J</i> -band SNR
Mag_U_CFHT	CFHTLS u' -band magnitude	snr_Z_VIDEO	VIDEO Y-band SNR
Mag_CH1	DeepDrill [3.6] magnitude	snr_Y_VIDEO	VIDEO Z -band SNR
-			

 ${\bf Table \ 1} \ continued \ on \ next \ page$

Table 1 (continued)

Name	Description	Name	Description		
Mag_err_Ks_VIDEO	VIDEO Ks-band magnitude error	snr_R_HSC	HSC <i>r</i> -band SNR		
$Mag_err_H_VIDEO$	VIDEO H -band magnitude error	snr_G_HSC	HSC g -band SNR		
Mag_err_J_VIDEO	VIDEO <i>J</i> -band magnitude error	snr_Z_HSC	HSC z -band SNR		
$Mag_err_Y_VIDEO$	VIDEO Y-band magnitude error	snr_Y_HSC	HSC Y -band SNR		
Mag_err_Z_VIDEO	VIDEO Z -band magnitude error	snr_I_VOICE	VOICE <i>i</i> -band SNR		
Mag_err_I_HSC	HSC i -band magnitude error	snr_R_VOICE	VOICE <i>r</i> -band SNR		
$Mag_err_R_HSC$	HSC r -band magnitude error	snr_G_VOICE	VOICE g -band SNR		
$Mag_err_G_HSC$	HSC g -band magnitude error	snr_U_VOICE	VOICE <i>u</i> -band SNR		
Mag_err_Z_HSC	HSC z -band magnitude error	snr_U_CFHT	CFHTLS u' -band SNR		
$Mag_err_Y_HSC$	HSC Y-band magnitude error	snr_CH1	DeepDrill [3.6] SNR		
$Mag_err_I_VOICE$	VOICE i -band magnitude error	snr_CH2	DeepDrill [4.5] SNR		
$Mag_err_R_VOICE$	VOICE r -band magnitude error	Model	Surface brightness profile model		
$Mag_err_G_VOICE$	VOICE g -band magnitude error	Fiducial_Band	VIDEO band used to define Model		
Mag_err_U_VOICE	VOICE u -band magnitude error	CFHTLS_tier	CFHTLS Tier (W1 or D1)		
$Mag_err_U_CFHT$	CFHTLS u' -band magnitude error	HSC_tier	HSC-SSP Tier (Wide, Deep, or Ultradeep)		
Mag_err_CH1	DeepDrill [3.6] magnitude error	Flag_I_HSC	HSC quality flag $(1 == poor)$		
Mag_err_CH2	DeepDrill [4.5] magnitude error	Flag_R_HSC	HSC quality flag $(1 == poor)$		
red_chi_Ks_VIDEO	VIDEO Ks-band $\chi^2_{\rm red}$	Flag_G_HSC	HSC quality flag $(1 == poor)$		
red_chi_H_VIDEO	VIDEO <i>H</i> -band $\chi^2_{\rm red}$	Flag_Z_HSC	HSC quality flag $(1 == poor)$		
red_chi_J_VIDEO	VIDEO J-band $\chi^2_{\rm red}$	photo_z	Photometric redshift		

NOTE—We report fluxes in μ Jy and magnitudes AB. For information on errors, see Appendix A of Nyland et al. (2017). Model values may be Dev (deVaucouleurs), Exp (exponential), or PtSrc (point source).

ACKNOWLEDGMENTS

Basic research in radio astronomy at the U.S. Naval Research Laboratory is supported by 6.1 Base Funding. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

REFERENCES

Aihara,	Н.,	Arimoto,	Ν.,	Armstrong	;, R.,	et	al.	2018,	PAS	ЗJ,
$70, S_{2}$	4, do	oi: 10.1093	8/pa	sj/psx066						

- Chen, C.-T. J., Brandt, W. N., Luo, B., et al. 2018, MNRAS, 478, 2132, doi: 10.1093/mnras/sty1036
- Gwyn, S. D. J. 2012, AJ, 143, 38, doi: 10.1088/0004-6256/143/2/38
- Jarvis, M. J., Bonfield, D. G., Bruce, V. A., et al. 2013, MNRAS, 428, 1281, doi: 10.1093/mnras/sts118
- Krefting, N., Sajina, A., Lacy, M., et al. 2020, ApJ, 889, 185, doi: 10.3847/1538-4357/ab60a0
- Lacy, M., Surace, J. A., Farrah, D., et al. 2021, MNRAS, 501, 892, doi: 10.1093/mnras/staa3714
- Lang, D., Hogg, D. W., & Schlegel, D. J. 2016, AJ, 151, 36, doi: 10.3847/0004-6256/151/2/36

- Miyazaki, S., Komiyama, Y., Nakaya, H., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84460Z, doi: 10.1117/12.926844
- Ni, Q., Timlin, J., Brandt, W. N., & Yang, G. 2019,
 Research Notes of the American Astronomical Society, 3,
 5, doi: 10.3847/2515-5172/aaf8af
- Ni, Q., Brandt, W. N., Chen, C.-T., et al. 2021, ApJS, 256, 21, doi: 10.3847/1538-4365/ac0dc6
- Nyland, K., Lacy, M., Sajina, A., et al. 2017, ApJS, 230, 9, doi: 10.3847/1538-4365/aa6fed
- Nyland, et al. 2023, DeepDrill Forced Photometry Catalog, IPAC, doi: 10.26131/IRSA550
- Patil, P., Nyland, K., Lacy, M., et al. 2019, ApJ, 871, 109, doi: 10.3847/1538-4357/aaf7a4

4

- Vaccari, M., Covone, G., Radovich, M., et al. 2016, in The 4th Annual Conference on High Energy Astrophysics in Southern Africa (HEASA 2016), 26, doi: 10.22323/1.275.0026
- Zou, F., Yang, G., Brandt, W. N., et al. 2021, Research Notes of the American Astronomical Society, 5, 56, doi: 10.3847/2515-5172/abf050
- Zou, F., Brandt, W. N., Chen, C.-T., et al. 2022, ApJS,

262, 15, doi: 10.3847/1538-4365/ac7bdf