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ABSTRACT

We present a study on the effects of the intracluster medium (ICM) on the interstellar medium

(ISM) of 10 Virgo cluster galaxies using Spitzer far-infrared (FIR) and VLA radio continuum

imaging. Relying on the FIR-radio correlation within normal galaxies, we use our infrared data

to create model radio maps which we compare to the observed radio images. For 6 of our sample

galaxies we find regions along their outer edges that are highly deficient in the radio compared

with our models. We believe these observations are the signatures of ICM ram pressure. For

NGC 4522 we find the radio deficit region to lie just exterior to a region of high radio polarization

and flat radio spectral index, however the total radio continuum in this region does not appear

significantly enhanced. This scenario seems consistent for other galaxies with radio polarization

data in the literature. We also find that galaxies having local radio deficits appear to have

enhanced global radio fluxes. Our preferred physical picture is that the observed radio deficit

regions arise from the ICM wind sweeping away cosmic-ray (CR) electrons and the associated

magnetic field, thereby creating synchrotron tails observed for some of our galaxies. CR particles

are also re-accelerated by ICM-driven shocklets behind the observed radio deficit regions which

in turn enhances the remaining radio disk brightness. The high radio polarization and lack of

coincidental signatures in the total synchrotron power in these regions arises from shear, and

possibly mild compression, as the ICM wind drags and stretches the magnetic field.

Subject headings: clusters: general — infrared: galaxies — radio continuum: galaxies — cosmic-

rays — galaxies: interactions — galaxies: ISM

1. Introduction

The physical processes associated with interactions between the intracluster medium (ICM) and the

interstellar medium (ISM) play critical roles driving the evolution of spiral galaxies in clusters (e.g. Gunn

& Gott 1972; Larson, Tinsley, & Caldwell 1980; Abadi, Moore, & Bower 1999; Schulz & Struck 2001;

Vollmer et al. 2001). Galaxies are preferentially found in groups or clusters where most of these processes

occur, yet many basic effects related to ICM-ISM interactions (i.e. ram pressure stripping) are still not

well understood. These effects include the fate of star-forming molecular clouds, the rates of triggered star
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formation versus gas removal, and the possible reconfiguration of a galaxy’s large-scale magnetic field and/or

cosmic-ray (CR) particles.

Since ram pressure will more easily affect lower density constituents of the ISM, it seems that the

diffuse radio continuum halos of galaxies may be sensitive tracers of active ICM pressure as indicated by

observations for a number of Virgo cluster spirals including NGC 4522 (Vollmer et al. 2004), NGC 4402

(Crowl et al. 2005), NGC 4254 (Chyży, Ehle, & Beck 2007), and a few others (Vollmer et al. 2007; Chung

et al. 2007). More specifically, large regions of enhanced polarized radio continuum emission have been

found within a number of cluster spirals (Vollmer et al. 2007; Chyży, Ehle, & Beck 2007); the maxima of

the polarized radio continuum distributions within these galaxies are located along outer edges and thought

to arise from external influences of the cluster environment. However, without a good idea of the galaxy’s

unperturbed appearance in the radio, these observations alone make it difficult to quantify the extent of

ram pressure effects. We now address this comparison using the nearly universal correlation between the

far-infrared (FIR) and non-thermal radio continuum emission of normal galaxies (e.g. de Jong et al. 1985;

Helou, Soifer, & Rowan-Robinson 1985).

Using a phenomenological smearing model, in which a galaxy’s FIR map is smoothed by a parameterized

kernel to compensate for the fact that the mean free path of dust heating photons is much shorter than the

diffusion length of CR electron, Murphy et al. (2008a) has shown for a sample of 15 non-Virgo spiral

galaxies that the dispersion in the FIR/radio ratios on sub-kiloparsec scales within galaxies can be reduced

by a factor of ∼2, on average. Accordingly, it is possible to obtain a good first order approximation of an

undisturbed galaxy’s non-thermal radio continuum morphology with its FIR image alone.

Coupling FIR observations taken by the Spitzer Space Telescope with VLA radio continuum imaging,

obtained as part of the VLA Imaging of Virgo in Atomic gas (VIVA; A. Chung et al. 2008, in preparation)

survey, we study how the relativistic and gaseous phases of the ISM are affected by ICM-ISM interactions for

a sample of Virgo cluster galaxies. This is done using FIR Spitzer maps to predict how the radio morphology

should appear if the galaxy resided in the field; in this paper we make the case that significant deviations

from such an appearance are directly related to ICM-ISM interactions. See Murphy et al. (2008b) for the

complete study.

2. Observations and Analysis

A total of ∼40 of the 53 VIVA sample galaxies are included in the Spitzer Survey of Virgo (SPITSOV;

see J.D.P. Kenney et al. 2008, in preparation; J.D.P Kenney et al. this proceedings) imaging program. At

the time of this writing, a sub-sample of 10 galaxies had existing high quality FIR and radio continuum

maps. Spitzer imaging was carried out for each galaxy using the Multiband Imaging Photometer for Spitzer

(MIPS; Rieke, et al. 2004). The strategy of the imaging campaign was based on that of the Spitzer Infrared

Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003) with the only difference being a factor of 2 increase

in exposure times to better detect diffuse emission arising in the outer regions of the Virgo sample galaxies.

The 1.4 GHz radio continuum maps were created from the line-free channels of H i data cubes collected

as part of of the VIVA survey; a detailed description of the VLA observations along with the H i reductions

and associated data products can be found in A. Chung et al. (2008, in preparation). To perform accurate

comparative analysis between the MIPS and radio data we match the resolution of the final calibrated images

using the MIPS PSF. After cropping each set of galaxy images to a common field of view we CLEANed the

radio data and convolved the resulting CLEAN components with a model of the MIPS 70 µm PSF.
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2.1. Modeled Radio Continuum Maps

Detailed studies of the FIR-radio correlation within nearby field galaxies (e.g. Murphy et al. 2006a,

2008a) have shown that the dispersion in the FIR/radio ratios on &0.1− 1 kpc scales within galaxy disks is

similar to the dispersion in the global FIR-radio correlation (i.e. .0.3 dex). This strong correlation between

the FIR and radio images of spirals has been found to improve by a factor of ∼2 using an image-smearing

technique which approximates a galaxy radio image as a smoother version of its FIR image due to the

diffusion of CR electrons. While the star-forming disks of cluster galaxies are often truncated due to the

gas stripping events, the 70 µm images for the entire sample do not appear to be more strongly disturbed

than galaxies in the field; we do not observe sharp edges, tails, or clear evidence for extraplanar emission

at 70 µm. Therefore, we apply the image-smearing technique of Murphy et al. (2006b, 2008a) (using a

single smoothing function) to create models for the expected radio distribution of a galaxy assuming that

the FIR/radio ratio map is like that of a field galaxy.

NGC 4330 NGC 4402 NGC 4522
Fig. 1.— The radio deficit regions of NGC 4330, NGC 4402, and NGC 4522 with radio continuum contours. The radio

continuum contours begin at the 3-σ RMS level and increase logarithmically. For each galaxy we find the deficit region to be

located on the edge opposite that of the observed synchrotron tails.

2.2. Deviations from Expectations for Field Galaxies

Our aim is to determine if differences between the observed and modeled radio continuum images arise

from ICM-ISM interactions and, if so, whether quantifying and comparing such differences within our sample

can help improve our current physical picture of such interactions. We therefore create ratio maps between

the observed and modeled radio maps in the following manner. We divide the observed radio map by the

modeled radio map after having removed pixels not detected at the 5-σ RMS level of the modeled map

only. Pixel values in the ratio map ≥1.3 and ≤0.5 are considered to be excesses and deficits, respectively;

for a more complete description on how radio deficit and excess regions were determined see Murphy et al.

(2008b).

For most (60%) of our sample galaxies we detect radio deficit regions which are located along a single

edge of their disks and opposite of any identified H i tails. The radio deficit regions are also generally

found to be opposite any radio excess regions associated with synchrotron tails; this is illustrated in Figure

1 for NGC 4330, NGC 4402, and NGC 4522. Since these H i and synchrotron tails are likely identifying

the direction of the ICM wind, we focus our attention toward the radio deficit regions as they are probing

directly the most intense effects of the ongoing ICM-ISM interactions. The combination of these observations

suggests that the radio deficit regions likely arise from the same gravitational or gas dynamical effects which
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have displaced the galaxy’s H i gas and relativistic plasma. We therefore believe that the radio deficit regions

identify the zone in which the ICM wind is actively working on each galaxy’s ISM.

To compare quantitatively the radio deficiencies among the sample galaxies we define the parameter

Υ =
(Smod

ν − Sobs
ν )def

Sglob
ν

(1)

which measures the difference between the observed and modeled radio flux densities within the radio deficit

region normalized by the global radio flux density of the galaxy.
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Fig. 2.— In the top panels, from left to right, we plot the radio continuum deficit map and the ratio map of the observed to

modeled radio continuum emission of NGC 4522 overlayed with radio spectral index contours taken from Vollmer et al. (2004).

The contour levels increase by 0.2 and range between −1.9 to −0.3; the dashes indicate the direction of the downward gradient.

The ratio maps is show in a logarithmic stretch ranging from 10% (dark) to a factor of 3 (light). We plot the same images in

the bottom panels except this time we overlay them with polarized radio contours (Vollmer et al. 2004). The contours are

logarithmically scaled and begin at the 3-σ RMS level. The cross in each panel identifies the center of the galaxy.

3. NGC 4522: Comparison of Radio Deficit Region with Radio Polarization and Spectral

Index Maps

Radio polarization and spectral index data of NGC 4522 provide evidence for an ongoing ICM-ISM

interaction (Vollmer et al. 2004); the eastern edge of NGC 4522 is found to be highly polarized and

coincident with the flattest spectral index which steepens towards the western side of the galaxy. In the first

column of Figure 2 we plot the radio continuum deficit regions and overlay the 20 to 6 cm spectral index and

6 cm polarized radio continuum maps of (Vollmer et al. 2004). We find that the regions of high polarization

and flattest spectral index lie just interior to the radio deficit region. While the peak in the polarized radio

continuum is coincident with the flattest part of the spectral index distribution, this is not where the total

radio intensity (or FIR) peaks as pointed out by (Vollmer et al. 2004).
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These observations suggest that any pre-existing gradient in the observed FIR/radio ratio distribution

will be stronger than deviations arising from the effects of ram pressure and that, to first order, star formation

in the disk drives the appearance of the FIR/radio ratios. However, by inspecting the ratio map of NGC 4522

displayed in the second column of Figure 2, which was created using our smoothed 70 µm image, ICM-ISM

effects become more apparent. We find slightly higher ratios (i.e. ratios of ∼90%) near the regions of high

radio polarization and flat spectral indices; the elevated ratios in these regions are therefore attributed to a

modest increase in the total radio continuum. We now try to determine the most plausible physical scenario

to explain this combination of observations.

4. Discussion

We have shown that a large fraction of our sample of cluster galaxies exhibits statistically significant

radio deficit regions relative to what the phenomenological image-smearing model of Murphy et al. (2008a)

would predict within their disks. Such deficit regions are not found within normal field galaxies suggesting

that cluster environment processes are likely at work. Comparing our results with other observational data

for NGC 4522, a galaxy which is clearly experiencing the effects of ram pressure, we find our deficit region

agrees with such a scenario and may be able to add new insight on the magnitude of the interaction.

Similar to the example of NGC 4522, radio polarization observations of other Virgo cluster galaxies

exhibit highly polarized radio emission along the predicted leading edges between their ISM and the ICM

wind (Vollmer et al. 2007; Chyży, Ehle, & Beck 2007). For the galaxies overlapping in our sample which

show evidence for being disturbed (i.e. NGC 4254, NGC 4388 and NGC 4402), the regions of highly polarized

continuum emission are coincident with local radio continuum enhancements found in our ratio maps (i.e.

ratios of ∼1.1 − 1.7) and interior to our radio deficit regions. Thus, the scenario described for NGC 4522

seems to be applicable for these galaxies as well based on the polarized radio continuum results. With this

picture we will use the findings from our analysis to quantitatively assess the strength of the ram pressure

from the intracluster medium (ICM).

4.1. Estimates of Minimum Ram Pressure and Internal Relativistic ISM Pressure

Ram pressure from the ICM is simply defined as,

Pram = ρICMv2
gal (2)

where ρICM is the ICM mass density and vgal is velocity of a galaxy relative to the ICM. If the ICM ram

pressure exceeds that of a galaxy’s relativistic ISM (CRs + magnetic field) then it should be possible to

redistribute and even strip them from the galaxy disk. Using the predicted radio flux density for each

deficit region, we can approximate a minimum value for the ICM ram pressure needed to cause the observed

depression in the radio.

Taking the predicted flux density of the deficit region along with its area we use the revised equipartition

and minimum energy formulas of Beck & Krause (2005) to calculate the minimum energy magnetic field

strength of the deficit regions. This calculation assumes a proton-to-electron number density ratio of 100,

a radio spectral index of −0.85, and a path length through the emitting medium of 1/cos(i) kpc where i is

the galaxy inclination. Using these magnetic field strengths B (i.e. calculated using Equation 4 of Beck &

Krause (2005)) we compute the magnetic field energy densities UB = B2/(8π) of the deficit regions.
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Assuming minimum energy between the magnetic field and CR particle energy densities, UB and UCR

respectively, we can use the values of UB over the deficit region in our model to determine the minimum

Pram necessary to create the deficit regions. From minimum energy arguments we find that UB = 3/4UCR.

For a relativistic gas the magnetic pressure, PB, and CR pressure PCR are related to energy density such

that PB = UB and PCR = 1/3UCR leading to the relation that PCR = 4/9UB. Then, the pressure of the

relativistic ISM is found to be

PRISM = PCR + PB ∼ 13/9UB. (3)

These estimates, denoted as Pmod
RISM set the minimum ICM ram pressure necessary to create the observed

radio continuum deficit regions (i.e. Pram > Pmod
RISM).

All galaxies have Pmod
RISM values between ∼2− 4× 10−12 dyn cm−2. Using the projected linear distances

to the cluster center among our sample along with a measured density profile of Virgo (Matsumoto et al.

2000) yields a range in ICM density of nICM = ρICM/mp ≈ 0.6 − 4 × 10−4 cm−3. Taking a typical Virgo

galaxy velocity of 1500 km s−1 (Kenney, van Gorkom, & Vollmer 2004) the associated range in ICM ram

pressure is Pram ≈ 2 − 15 × 10−12 dyn cm−2. This range of ICM pressures is generally greater or similar

to the values for Pmod
RISM which is consistent with ICM ram pressure being able to create the observed deficit

regions. We also note that these pressures agree with those produced in the 3D hydrodynamical simulation

of Roediger & Brüggen (2007) over the same projected linear distances to the cluster center among our

sample.

Fig. 3.— The severity of the deficit region characterized by Υ plotted against q (the logarithmic FIR/radio ratio). The

vertical line at q = 2.34 identifies the average q value reported by Yun, Reddy, & Condon (2001) for 1809 galaxies.

4.2. Cosmic Ray Electron Escape and Re-acceleration

While the CR electrons are being moved around by the ICM wind, it does not appear that they escape

the galaxy disks as global q (logarithmic FIR/radio) ratios do not appear systematically high with respect

to the nominal value of ∼2.34±0.26 dex (i.e. Yun, Reddy, & Condon 2001). In fact, by plotting q against Υ

(our parameter defining the severity of the deficit region) in Figure 3 we find a trend of decreasing FIR/radio

ratio with increasing Υ and that nearly all of the q values are lower than the nominal value. Other, more

detailed studies on the global FIR and radio properties of cluster galaxies, have pointed out notably lower
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FIR/radio ratios than expected from the FIR-radio relation in the field (Miller & Owen 2001; Reddy &

Yun 2004). This suggests that there is either depressed FIR emission or an enhancement in the global radio

emission among our sample galaxies. And while the trend in Figure 3 may simply be the result of small

number statistics, it also might be suggestive that q itself is sensitive to the strength of the ICM ram pressure

and perhaps a galaxy’s stripping history.

The only major exception in our sample is NGC 4580 which has a very high q value; this galaxy also

has the highest H i deficiency among the sample (a factor of 5 larger than the median). It is also thought

to have been stripped long (∼400 Myr) ago and is the only post-strongly stripped galaxy observed so long

after peak pressure (Crowl & Kenney 2008). We therefore speculate that its high q value is the result of CR

electron escape as the ICM wind has swept out most of the galaxy’s gaseous and relativistic ISM long ago.

While it is still not completely clear, we believe the most plausible explanation for the depressed q values

seems to be that of the ICM wind raising the global CR electron energy and synchrotron power by driving

shocklets into the ISM which are re-accelerating CR electrons. The fact that we only find moderate local

enhancements to the total continuum behind the radio deficit region suggests that the shocks run through

the entire galaxy disk rather quickly. The shock speed, vs, which must be super-Alfvénic to re-accelerate CR

electrons, should have a value around

vs ≈

(

4

3

Pram

ρISM

)1/2

≈ vgal

(

4

3

ρICM

ρISM

)1/2

, (4)

where Pram is the ram pressure, as defined in Equation 2, and ρISM and ρICM are the ISM and ICM densities,

respectively. Taking vgal ≈ 1500 km s−1, nISM = ρISM/mp ≈ 1 cm−3, and the range in ρICM values discussed

leads to shock velocities ranging between ∼10 to 35 km/s. Assuming a thin disk thickness of 500 pc, the

shocks should run through each disk on the order of ∼15 to 50 Myr; indeed this is very short compared to

the dynamical timescale of these systems.

5. Summary and Conclusions

We have studied the interstellar medium (ISM) of 10 Virgo galaxies included in the VLA Imaging

of Virgo in Atomic Gas (VIVA) survey using Spitzer MIPS and VLA 20 cm imagery. By comparing the

observed radio continuum images with modeled distributions, created using a phenomenological image-

smearing model described by Murphy et al. (2006b, 2008a), we find that the edges of many cluster galaxy

disks are significantly radio deficient. These radio deficit regions are consistent with being areas affected by

intracluster medium (ICM) induced ram pressure as suggested by the location of H i and radio continuum

tails. From our results we are able to conclude the following:

1. The distribution of radio/FIR ratios within cluster galaxies thought to be experiencing ICM-ISM effects

are systematically different from the distribution in field galaxies; radio/FIR ratios are found to be

significantly low along galaxy edges probably in the direction of the ICM wind arising from a local

deficit of radio continuum emission.

2. In the case of NGC 4522 we find that the radio deficit region lies exterior to a region of high radio

polarization and a flat radio spectral index. We interpret this to suggest that CR electrons in the

halos of galaxies are being swept up by the ICM wind. The ICM wind drives shocklets into the ISM of

the galaxy which re-accelerate CR particles interior to the working surface at the ICM-ISM interface.
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Some CR electrons may also be redistributed downstream creating synchrotron tails as observed for

NGC 4522. The high radio polarization is probably the result of shear as the ICM wind stretches the

magnetic field; compression may also play a role, though a modest one, since the total radio continuum

in these regions does not appear significantly enhanced.

3. The global radio/FIR ratios of these cluster galaxies are systematically higher than the average value

found for field galaxies and appear to increase with increasing severity of the ISM stripping. We

attribute this to a greater relative increase in the CR energy density pursuant to a more sever effect

of stripping on the galaxy.

4. Using the identified radio deficit regions we are able to get a quantitative estimate of the minimum

strength of the ICM pressure required to affect a galaxy disk; we find values in the range of ∼2 − 4 ×

10−12 dyn cm−2. These pressures are generally smaller than, but similar to, those estimated for typical

values of the ICM gas density and galaxy velocities, as well as the range of ram pressures calculated by

3D hydrodynamical simulations; therefore, our estimates are consistent with scenario of ram pressure

creating the observed deficit regions.

We are grateful to the SINGS team for producing high quality data sets used in this study. This

work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet

Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this

work was provided by NASA through an award issued by JPL/Caltech.
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