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ABSTRACT

A brief description of the methodology of construction, contents and usage of thePlanck Early Release Compact Source Catalogue (ERCSC),
including the Early Cold Cores (ECC) and the Early Sunyaev-Zeldovich (ESZ) cluster catalogue is provided. The catalogue is based on data that
consist of mapping the entire sky once and 60% of the sky a second time byPlanck, thereby comprising the first high sensitivity radio/submillimetre
observations of the entire sky. Four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the
injection and extraction of artificial sources into thePlanck maps was implemented to select reliable sources among all extracted candidates such
that the cumulative reliability of the catalogue is≥90%. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo
assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used
at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857 GHz. The 10σ photometric flux
density limit of the catalogue at|b| > 30◦ is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30
and 857 GHz. Sources which are up to a factor of∼2 fainter than this limit, and which are present in “clean” regions of the Galaxy where the sky
background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion. ThePlanck
ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic
interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs. In addition, two early release catalogs
that contain 915 cold molecular cloud core candidates and 189 SZ cluster candidates that have been generated using multifrequency algorithms are
presented. The entire source list, with more than 15000 unique sources, is ripe for follow-up characterisation withHerschel, ATCA, VLA, SOFIA,
ALMA and other ground-based observing facilities.

Key words. Cosmology:observations – Surveys – Catalogues – Radio continuum: general – Submillimetre: general

⋆ Corresponding Author: R.-R. Chary, rchary@caltech.edu

1. Introduction

Planck1 (Tauber et al. 2010; Planck Collaboration 2011a) is the
third-generation space mission to measure the anisotropy of

1 Planck (http://www.esa.int/Planck) is a project of the European
Space Agency (ESA) with instruments provided by two scientific con-
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the cosmic microwave background (CMB). It observes the sky
in nine frequency bands covering 30–857GHz with high sen-
sitivity and angular resolution from 33 arcmin to 4.2 arcmin
(Table 1). The Low Frequency Instrument (LFI; Mandolesi et al.
2010; Bersanelli et al. 2010; Mennella et al. 2011) covers the
30, 44, and 70 GHz bands with amplifiers cooled to 20 K.
The High Frequency Instrument (HFI; Lamarre et al. 2010;
Planck HFI Core Team 2011a) covers the 100, 143, 217, 353,
545, and 857 GHz bands with bolometers cooled to 0.1 K.
Polarisation is measured in all but the highest two bands
(Leahy et al. 2010; Rosset et al. 2010). A combination of radia-
tive cooling and three mechanical coolers produces the temper-
atures needed for the detectors and optics (Planck Collaboration
2011b). Two data processing centres (DPCs) check and cali-
brate the data and make maps of the sky (Planck HFI Core Team
2011b; Zacchei et al. 2011).Planck’s sensitivity, angular resolu-
tion, and frequency coverage make it a powerful instrument for
Galactic and extragalactic astrophysics as well as cosmology.

Planck spins around its axis at a rate of one rotation per
minute. The focal plane is oriented at an angle of 85◦ to
the satellite spin axis, which tracks the direction of the Sun
at ≈1◦ per day. The effective Planck scan strategy described
in Dupac & Tauber (2005) results in areas near the ecliptic
poles being observed several times more frequently than re-
gions of sky near the ecliptic plane. This implies that there
is a range of almost 50 in instrumental noise between the
most- and least-frequently observed areas of the sky (Figure
1). This scan strategy achieved greater than 99.9% coverage
of the full sky on 1 April 2010 with gaps predominantly
resulting from planet crossings and the masking of associ-
ated artefacts. A comparison between the all sky imaging ca-
pabilities of Planck, Wilkinson Microwave Anisotropy Probe
(WMAP), Cosmic Background Explorer/Differential Microwave
Radiometer (COBE/DMR), Akari, Infrared Astronomy Satellite
(IRAS) and Wide-field Infrared Survey Explorer (WISE) is
shown in Table 1.Planck straddles the wavelength range
betweenWMAP (Bennett et al. 2003) at one end andAkari
(Murakami et al. 2007) at the other end. At its lowest frequen-
cies Planck improves upon the imaging resolution ofWMAP.
AlthoughPlanck does not have the high resolution ofAkari or
WISE(Wright et al. 2010) at higher frequencies, it matches the
capabilities ofIRAS at frequencies which are more than a fac-
tor of three lower thanIRAS. The consequence of this unprece-
dented spatial resolution and wavelength coverage is a unique si-
multaneous, multiwavelength view of the sky, enabling the study
of a broad class of sources, and facilitating improved separation
between Galactic and extragalactic foregrounds and the CMB.

The Early Release Compact Source Catalogue is a catalogue
of all high-reliability sources, both Galactic and extragalactic,
detected over the entire sky, in the firstPlanck all-sky survey.
This includes a sample of clusters detected through the Sunyaev-
Zeldovich (SZ) effect and a catalogue of cold, molecular cloud
cores with far-infrared colour temperatures cooler than the am-
bient T ∼18K dust in our Galaxy. No polarisation information
is provided for the sources at this time. One of the primary
goals of the ERCSC is to provide an early catalogue of sources
for follow-up observations with existing facilities, in particu-
lar Herschel, while they are still in their cryogenic operational
phase. The need for a rapid turnaround (less than nine months)

sortia funded by ESA member states (in particular the lead countries
France and Italy), with contributions from NASA (USA) and telescope
reflectors provided in a collaboration between ESA and a scientific con-
sortium led and funded by Denmark.

from the end of the first sky coverage to a community-wide re-
lease of source lists is the motivating factor behind the reliability
and flux-density accuracy requirements as well as the choiceof
algorithms that were adopted for the ERCSC.

The sources of noise vary significantly as a function of lo-
cation on the sky as well as a function of frequency. Apart from
the instrumental noise and the Galaxy, at the lowest frequencies
the dominant astrophysical source of noise is the CMB itself. At
the highest frequencies, zodiacal dust and emission from the in-
terstellar medium dominate. As a result, the flux density limits
corresponding to the same reliability vary widely across the sky
(Figure 1), with the sensitivity typically improving with increas-
ing ecliptic latitude. The areas of deepest coverage are centred
on the ecliptic pole regions due to the scan strategy and indi-
vidual sources in that vicinity may be observed several times by
Planck in the course of a single sky survey.

The data obtained from the scans of the sky between 2009
August 13 and 2010 June 6, corresponding toPlanck opera-
tional days 91–389, have been processed and converted into all-
sky maps at the HFI and LFI Data Processing Centres (DPCs).
The data extend beyond a single sky coverage with 60% of
the second sky coverage included in the maps. A descrip-
tion of the processing can be found in Zacchei et al. (2011);
Planck HFI Core Team (2011b). Four different implementations
of source detection algorithms were run on these maps. The per-
formance of these algorithms was compared and the single im-
plementation which provides superior source statistics ateach
frequency was selected for the final catalogue at that frequency.
For the early SZ (ESZ) and early cold cores (ECC) catalogues,
multifrequency algorithms described in Melin et al. (2006)and
Planck Collaboration (2011s) respectively, have been run to pro-
vide a candidate source list, which has then been culled to main-
tain the high reliability required for the ERCSC. This paper
describes the methodology through which the ERCSC pipeline
generates a high reliability source catalogue as well as presents
the contents and characteristics of thePlanck ERCSC data re-
lease.

2. The ERCSC Pipeline

This section summarises the steps involved in progressing
from the initial Planck all-sky maps to the final catalogue.
A full description of the entire process can be found in
Planck Collaboration (2011v), which has been released withthe
ERCSC.

The intensity maps on which the ERCSC pipeline is run
are in HEALPix format (Górski et al. 2005) in units of KRJ
(Kelvin Rayleigh-Jeans, a measure of brightness temperature)
in the Galactic coordinate system. Thermodynamic temperature
(TCMB) is related to the Rayleigh-Jeans brightness temperature
by:

KRJ = TCMB ×
x2 expx

(expx − 1)2
(1)

x =
hν

k × 2.725
(2)

whereh is the Planck constant,k is the Boltzmann constant and
ν is the frequency. The pixel size is 3.4 arcmin for the LFI bands
(30–70GHz) and 1.7 arcmin for the HFI bands (100–857GHz)
which corresponds to NSIDE values of 1024 and 2048 in the
HEALPix format. In addition to the intensity map, there is a cor-
responding covariance map at each frequency, which is a mea-
sure of the noise in that pixel measured as the standard deviation

2
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Table 1.Comparison between all sky surveys with similar frequencies aligned in rows. The left column for each mission gives the
frequency (ν in GHz) while the right column gives the spatial resolution as a full width at half maximum (FWHM) in arcminutes.

DMR WMAP Planck Akari IRAS WISE
ν FWHM ν FWHM ν FWHM ν FWHM ν FWHM ν FWHM

23 53
32 420 33 40 30 32.65

41 31 44 27.00
53 420 61 21 70 13.01
90 420 94 13 100 9.94

143 7.04
217 4.66
353 4.41
545 4.47
857 4.23

1.9×103 0.8
2.1×103 0.7
3.3×103 0.45 3×103 5.2
4.6×103 0.32 5×103 3.9
16.7×103 0.09 12×103 4.5 13.6×103 0.2
33×103 0.05 25×103 4.7 25×103 0.11

65×103 0.11
88×103 0.1

Fig. 1. The variance in units of Kelvin2 across the entire sky, with the left panel showing the variance for the LFI frequencies and
the right panel showing the variance for the HFI frequencies. At any single frequency, the variance in the all-sky maps span almost
a factor of 50 over the entire sky.

of all scans that have gone through that pixel, after removalof an
offset from each ring of observations. The covariance maps are
in units of KRJ

2. A full description of the map-making process
can be found in Planck HFI Core Team (2011b).

The three core processing steps within the ERCSC pipeline
are source detection, source extraction, and in the case of
857 GHz, measuring the flux densities of each source at the three
lower frequencies, 217, 353, and 545 GHz, which is sometimes
referred to as band-filling. These three steps are first run onthe
intensity maps to obtain catalogues of sources. The processis
then repeated on maps which have a population of artificial point
sources of varying flux densities injected directly into themaps.
The performance of the algorithms are evaluated based on the
positions and extracted flux densities of the artificial sources
whose real flux density and positions are precisely known. Based
on the properties of the extracted artificial sources, signal-to-
noise ratio (SNR) cuts are defined such that the properties ofthe
extracted artificial sources are robust both in terms of position
and flux density. The same signal-to-noise cut is then applied to
the real catalogue of sources generated from the intensity maps

to obtain a high reliability catalogues. Secondary qualityassess-
ment cuts are applied to the catalogue to eliminate sources as-
sociated with known artefacts in the maps. Additional proper-
ties of the reliable sources such as the dates they were observed,
their presence in CMB subtracted maps, their flux density esti-
mated from point source fitting, and the potential contribution of
Galactic cirrus emission are evaluated in the final stages ofthe
pipeline.

We note that the maps used for the ERCSC are affected
by uncorrected pointing errors of at least two types. The
first is due to time-dependent, thermally-driven misalignment
between the star tracker and the boresight of the telescope
(Planck Collaboration 2011a). The second is due to uncorrected
stellar aberration across the focal plane. Since 70% of the sky
is observed at least twice with different orientations, the effect
of stellar aberration for the majority of sources is negligible.
However, for the remaining 30% of the sky, the effect would
result in an offset ranging from 21′′ near the ecliptic poles to a
value close to 0′′ in the ecliptic plane. We do not see this effect
clearly in the centroids of sources in the ERCSC, likely because

3
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the intrinsic uncertainty in the positions is comparable tothe
maximum offset induced by these pointing errors. Furthermore,
since these pointing errors are not factored into the injection of
the artificial sources into the maps, the positional uncertainty
from the Monte-Carlo analysis is an underestimate. The effect
on the flux density of the catalogue sources is negligibly small,
.2%. Both types of pointing error will be corrected in the maps
used for future Planck catalogues.

2.1. Source Detection Algorithms

Four specific implementations of source detection algorithms
were run as part of the ERCSC pipeline. These are the
Paris Matched Filter (PMF; Melin et al. 2006), IFCA Mexican
hat wavelet filter (IFCAMex; López-Caniego et al. 2007),
PowellSnakes (PwS; Carvalho et al. 2011, in preparation;
Carvalho et al. 2009) and SExtractor (Bertin & Arnouts 1996).
Some of the algorithms are still in development and the results
depended on version of algorithms used and their implementa-
tion methodology in the ERCSC pipeline. Of these, only two
were selected to generate the final catalogues. The two algo-
rithms were selected to provide the largest numbers of high relia-
bility sources at high Galactic latitude in thePlanck maps. These
are PwS v2.0 for frequencies 30–143GHz, and SExtractor for
frequencies 217–857GHz.

2.1.1. PowellSnakes

PowellSnakes is a fast Bayesian method for the detection of dis-
crete objects immersed in a diffuse background. The application
of Bayesian model selection and the Bayesian information cri-
terion to source detection and extraction have been reviewed by
Hobson & McLachlan (2003) and Savage & Oliver (2007). PwS
builds on these ideas and incorporates them in a fast implemen-
tation.

The all-sky map is resampled onto a set of overlapping flat
patches using a gnomonic (tangent plane) projection. Each patch
is modelled as a set of discrete objects, of known shape, embed-
ded in a stochastic background, with added instrumental noise.
The object shape is chosen to be a circular Gaussian approx-
imation to the effective point spread function (PSF), and the
background and instrumental noise are modelled as a Gaussian
random field with power spectrum to be estimated from the
data. Because both the PSF and background vary with sky po-
sition, the analysis is performed on overlapping sky patches
within which the properties are assumed to be uniform. At high
latitudes and low frequencies the background is dominated by
the CMB, so the Gaussian assumption is a good one; near the
Galactic Plane, however, the background is dominated by emis-
sion from the ISM and the assumption breaks down. In practice,
however, PwS gives good results in these cases. At the highest
frequencies SExtractor was found to perform better than PwS,
probably because the model of the background statistics is poor,
and also because many of the sources are diffuse peaks in the
ISM emission and are not well represented by the PSF model.

Given these assumptions, PwS estimates source parameters
by maximising the posterior probability (i.e., the productof the
likelihood and an assumed prior), using a simultaneous multi-
ple maximisation code based on Powell’s direction set algorithm
(hence the name) to rapidly locate local maxima in the posterior.
This novel feature makes PwS substantially faster than Monte-
Carlo Markov chain methods used by Hobson & McLachlan
(2003). Whether or not a posterior peak corresponds to a source

is determined by Bayesian model selection using an approxi-
mate evidence value based on a local Gaussian approximation
to the peak. In this step, PwS minimises the average loss matrix
rather than maximising either reliability or completeness: that
is, it treats spurious detections and missing detections asequally
undesirable.

For detection of sources with high signal-to-noise ratio, PwS
is fairly insensitive to the choice of priors. For the version of the
algorithm which was used for ERCSC, a flat distribution of pri-
ors was adopted with the distribution of priors on the intrinsic
source radius being uniform between 0 and 3.′4 for all frequen-
cies. Since this is smaller thanPlanck’s spatial resolution at any
frequency, the effect of the priors is to favour point sources.

After merging the results from each patch, the output of PwS
is a set of source positions with estimated flux densities. The
ERCSC pipeline photometry algorithms are then applied at each
position to obtain other measures of flux density and size, taking
into account the instrumental noise in each pixel.

2.1.2. SExtractor

SExtractor (Bertin & Arnouts 1996), as for PwS, requires local
flat patches created from gnomonic projections. Each map is pre-
filtered with a Gaussian kernel the same size as the beam at each
frequency (the built-in filtering step within SExtractor isnot used
as it uses a digitised filtering grid). Typically, a Mexican hat fil-
ter gives slightly more reliable detections of point sources in
the presence of noise and background, although bright extended
sources are often missed. However, a Gaussian filter is adopted
because simulations show that it performed almost as well as
the Mexican hat for high-latitude compact sources and is still
sensitive to sources that are extended. The algorithm then finds
objects by isolating connected groups of pixels above a certain
n−sigma threshold. Sources which are extremely close to each
other are deblended if a saddle point is found in the intensity dis-
tribution. Spurious detections due to neighbouring brightobjects
are cleaned, and finally the algorithm determines the centroids of
each source and performs photometry in an elliptical Kron aper-
ture (Bertin & Arnouts 1996; Kron 1980).

The performance of SExtractor’s own adaptive aperture pho-
tometry (MAG AUTO) is good at high latitudes for allPlanck
frequencies, providing flux densities to within 10% accuracy,
and errors typically 1–5%. Nevertheless, at low Galactic lati-
tudes, particularly at the highest frequencies, the photometric
accuracy is significantly degraded. This is because it uses avari-
able Kron radius, which becomes unstable in crowded fields
with strong residual background fluctuations. To ensure homo-
geneous flux density estimates, the primary flux density estimate
is obtained from an external source extraction code, as was done
for PwS.

2.1.3. Flux Density Estimation

Each source that is extracted has four different measures of flux
density associated with it. These are based on aperture photom-
etry, PSF fitting, Gaussian fitting and a measure native to the
source detection algorithm (Table 2). Each of these flux den-
sity estimates has a local background subtracted but they have
not been colour corrected. Colour corrections are available in
Planck Collaboration (2011v).

1. The FLUX and FLUXERR columns in the ERCSC FITS
files give the flux densities measured in a circular aper-
ture of radius given by the nominal sky-averaged FWHM.
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Appropriate corrections have been applied for the flux den-
sity outside the aperture, assuming that the source profile is
a point source.

2. The PSFFLUX and PSFFLUXERR columns give flux den-
sities estimated by fitting the source with thePlanck point
spread function at the location of the source (Mitra et al.
2011). ThePlanck point spread function is estimated at each
point on the sky by combining the individual horn beams
with the scan strategy, where the individual beams are de-
rived from when the scans cross planet positions. A 2D
Gaussian is fit to the PSF and the derived parameters of the
Gaussian are used to perform a constrained Gaussian fit to
the source.

3. The GAUFLUX and GAUFLUXERR columns give flux
densities estimated by fitting the source with an elliptical
Gaussian model whose parameters are free.

4. The FLUXDET and FLUXDETERR columns gives the flux
densities estimated by the native detection algorithm. For
the frequencies at which PwS is used, this is estimated by
utilising the mean of the posterior distribution of all pa-
rameters, while for frequencies at which SExtractor is used,
it is the flux density in an elliptical Kron aperture, i.e.,
FLUX AUTO. The FLUXDET values at the frequencies
where PwS is used have been corrected for an average bias
that was seen in the difference between the extracted and in-
put flux density of Monte-Carlo sources that were injected
into the maps. This is most likely due to an inaccurate rep-
resentation of the true beam inside the PwS detection algo-
rithm. For faint extended sources in the upper HFI frequen-
cies, the SExtractor FLUXDET values might be useful.

Once the initial pass of the algorithm generates the list of all
sources in the map, the next step is to identify the ones which
are highly reliable, i.e., those that have accurate positions as
well as flux density uncertainties which are less than 30%2. In
the absence of a “truth” catalogue for the sky, it is not possi-
ble to definitively identify reliable sources. The significant fre-
quency difference betweenAkari, IRAS andPlanck at submil-
limetre frequencies implies that uncertain extrapolations of the
thermal dust spectral energy distribution (SED) need to be made
to force associations between far-infrared sources andPlanck
sources. At radio frequencies, deeper surveys such as thosewith
the Green Bank Telescope, Parkes and ATCA have been under-
taken (e.g. Gregory et al. 1996; Griffith et al. 1995). However,
the flat-spectrum radio sources that dominate the source popula-
tion vary significantly even on short time scales. In addition, the
high source density of those surveys requires assumptions about
the thermal and non-thermal spectral indices in order to iden-
tify possible associations between thePlanck sources and the
radio sources. Although these ancillary external catalogues are
used for cross-validation of the final ERCSC, the primary mea-
sure of reliability for the sources uses a Monte-Carlo Quality
Assessment (MCQA) analysis that is described in the next sec-
tion. This is the first application of a Monte-Carlo source char-
acterisation algorithm at these frequencies, although thepractise
is fairly commonplace at higher frequencies (Chary et al. 2004,
and references therein). The process is described below.

2 Spurious sources can be classified as those which have an intrin-
sic flux density of zero but with some arbitrary extracted fluxdensity,
corresponding to a flux density error of 100%. The presence ofsuch
sources would decrease the reliability at the corresponding extracted
flux density.

2.2. Primary Reliability Selection: Monte-Carlo Analysis

Quality assessment (QA) is an integral step in the validation of a
catalogue. It helps quantify flux-density biases and flux-density
uncertainties, positional errors, completeness and reliability in
a catalogue. QA metrics based on external (“truth”) catalogues
suffer at the brightest flux densities since source numbers are
sparse and resultant QA metrics are dominated by Poisson noise.
In addition, generating such a truth catalogue for the sky from
past observational priors, requires uncertain assumptions about
the behaviour of sources across a wide range of frequencies.As
a result, the Monte-Carlo QA approach is adopted as the primary
criterion for selecting high reliability sources.

The goals of the Monte-Carlo QA system are:

1. To quantify flux-density biases and flux-density uncertainties
as a function of background.

2. To quantify completeness in extracted sources as a function
of flux density.

3. To quantify contamination or “spurious sources” as a func-
tion of flux density.

4. To assess positional offsets between extracted and input
sources.

5. To assess systematic uncertainties associated with beam
shape, gaps in coverage, scan strategy, etc.

The first step of the MC QA analysis is to run the ERCSC
pipeline on the input maps to generate a source catalogue forthe
true sky. Unresolved point sources, convolved with a circularly
symmetric Gaussian with full-width at half maximum identical
to that of the derived effective beam, are injected into the maps at
random positions and with random flux densities (S ν) and re-run
the main ERCSC pipeline. The typical run parameters are 1000
sources per iteration, uniformly distributed across the sky. In or-
der to minimise Poisson

√
N variation in our estimates of QA

parameters, while keeping confusion low, we execute 10 itera-
tions. The present set of runs uses a flatdN/d logS distribution
at all flux densities ranging from 100 mJy to 100 Jy. We have
previously tested Monte-Carlo runs where the injected sources
follow a flux-density distribution that is similar to thePlanck
Sky Model. No significant differences due to the choice of flux
density distribution have been found, particularly because source
extraction in thePlanck maps are not significantly affected by
source confusion.

We note that to precisely assess the performance of the
pipeline, including systematic effects associated with the gen-
eration of the all-sky maps, the artificial sources should bein-
jected into the time-ordered data stream and processed through
each each of the data-processing steps outlined in Zacchei et al.
(2011); Planck HFI Core Team (2011b). This however, is pro-
hibitively expensive in terms of computational resources and
cannot be accomplished at the present time given the rapid
turnaround required for the ERCSC.

At the end of the Monte-Carlo runs, we have one catalogue
which only comprises the sources detected in the original map
and 10 catalogues which have the original sources in addition
to the detected fraction of the fake sources that were injected
into the maps. We first match the sources in the original map to
each of the remaining 10 catalogues with a matching threshold
of twice the FWHM. This leaves only the artificial and spurious
sources in the catalogues, whose properties can then be com-
pared to the known flux densities and positions of the injected
sources.

Reliability specifies the fraction of extracted sources that dif-
fer from their input flux densities to within 30%. This is based on
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Table 2.ERCSC Catalogue Columns

Column Name Description
Identification

NAME Source name
FLUX Flux density (mJy)
FLUX ERR Flux density error (mJy)
CMBSUBTRACT Flag indicating detection of source in CMB subtracted maps
EXTENDED Flag indicating that source is extended
DATESOBS UTC dates at which this source was observed
NUMOBS Number of days this source observed
CIRRUS Cirrus flag based on 857 GHz source counts

Source Position
GLON Galactic longitude (deg) based on extraction algorithm
GLAT Galactic latitude (deg) based on extraction algorithm
POSERR Standard deviation of positional offsets for sources with this SNR (arcminute)
RA Right Ascension (J2000) in degrees transformed from (GLON,GLAT)
DEC Declination (J2000) in degrees transformed from (GLON,GLAT)

Effective beam
BEAM FWHMMAJ Elliptical Gaussian beam FWHM along major axis (arcmin)
BEAM FWHMMIN Elliptical Gaussian beam FWHM along minor axis (arcmin)
BEAM THETA Orientation of Elliptical Gaussian major axis (measured East of Galactic North)

Morphology
ELONGATION Ratio of major to minor axis lengths

Source Extraction Results
FLUXDET Flux density of source as determined by detection method (mJy)
FLUXDET ERR Uncertainty (1 sigma) of FLUXDET (mJy)
MX1 First moment in X (arcmin)
MY1 First moment in Y (arcmin)
MX2 Second moment in X (arcmin2)
MXY Cross moment in X and Y (arcmin2)
MY2 Second moment in Y (arcmin2)
PSFFLUX Flux density of source as determined from PSF fitting(mJy)
PSFFLUXERR Uncertainty (1 sigma) of PSFFLUX (mJy)
GAUFLUX Flux density of source as determined from 2-D Gaussian fitting (mJy)
GAUFLUX ERR Uncertainty (1 sigma) of GAUFLUX (mJy)
GAU FWHMMAJ Gaussian fit FWHM along major axis (arcmin)
GAU FWHMMIN Gaussian fit FWHM along minor axis (arcmin)
GAU THETA Orientation of Gaussian fit major axis

Quality Assurance
RELIABILITY Fraction of MC sources that are matched and havephotometric errors< 30%
RELIABILITY ERR Uncertainty (1 sigma) in reliabiliy based on Poisson statistics
MCQA FLUX ERR Standard deviation of photometric error for sources with this SNR
MCQA FLUX BIAS Median photometric error for sources with this SNR
BACKGROUND RMS Background point source RMS obtained from threshold maps (mJy)

Bandfilling (857 GHz catalogue only)
BANDFILL217 217 GHz Aperture Photometry Flux Density at 857GHz Source Position (mJy)
BANDFILL217 ERR Uncertainty in BANDFILL217
BANDFILL353 353 GHz Aperture Photometry Flux Density at 857GHz Source Position (mJy)
BANDFILL353 ERR Uncertainty in BANDFILL353
BANDFILL545 545 GHz Aperture Photometry Flux Density at 857GHz Source Position (mJy)
BANDFILL54 5ERR Uncertainty in BANDFILL545

the flux density accuracy requirement for the ERCSC. Imposing
the requirement implies that the catalogue is equivalent toa cat-
alogue with a>5σ cut if the noise were Gaussian. That is, a
typical 5σ source would have a flux density error that is smaller
than 20%, 68% of the time, which translates to a flux density er-
ror of <30% for 90% of the sources, for a Gaussian distribution
of errors. It is well known that the contribution from the Galaxy
and the CMB results in a non-Gaussian distribution for the back-
ground RMS, at least on large spatial scales. Future work will at-
tempt to build upon our increased knowledge of the foregrounds
from thePlanck maps and undertake a more precise characteri-
zation of the noise.

The reliability is measured as a function of root-mean-square
(RMS) signal-to-background where the signal is a measure of

the flux density of the source and therefore either FLUX or
FLUXDET. The background RMS is derived from the RMS
measured in a 2◦ radius annulus on the maps after individual
detected sources are masked. The choice of 2◦ was made empir-
ically. It was found that if the outer radius were too small, i.e.,
tens of minutes of arc, the RMS was similar to the RMS returned
by the detection algorithms which detect sources as peaks above
the local RMS. These RMS returned by the codes are typically
lower than the RMS measured in the larger annulus used here.
If the outer radius were too large (several degrees), background
structure gets smoothed out. A radius of 2◦ represents a trade-
off between these two extremes and yields a background RMS
which is a combination of substructure in the background and
the instrumental noise in the maps. The RMS is converted to a
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1σ background RMS for a point source, by integrating over the
Planck beam.

Figure 2 shows the flux-density accuracy, the positional ac-
curacy and the differential reliability as a function of SNR at
30 GHz based on the artificially injected Monte-Carlo sources.
The differential reliability is simply the reliability in each bin of
SNR while the cumulative reliability is the integral of the dif-
ferential reliability above a particular SNR value. Also shown in
Figure 2 is the flux density accuracy, positional uncertainty, com-
pleteness and reliability as a function of flux density for the half
of the sky with the lowest sky background RMS. Due to the dif-
ferences between how FLUX and FLUXDET are estimated, the
top panels and lower panels are not the same. First, FLUXDET
flux densities have a larger scatter at almost all SNR ratios com-
pared to FLUX. This is partly due to the prior assumptions on
the source profile that are made in the estimation of FLUXDET.
Deviations from this assumed source profile result in errorsin
the derived flux density.

Second, the FLUXDET reliabilities appear to be higher at
low SNR compared to the FLUX based reliability values. At low
values, the aperture flux-density based FLUX estimates tendto
become increasingly affected by sky noise and even the back-
ground estimation becomes more uncertain. FLUXDET values
are derived assuming a fixed source shape and a flat background.
As a result, for point sources, the scatter in FLUXDET valuesat
low SNR is smaller. When the error in the flux density estimate
exceeds 30%, the reliability decreases. We note that the uncer-
tainty on the reliability estimate is dominated by the Poisson
statistics of the number of sources in the corresponding SNR
bins. That is, if the completeness in a particular SNR bin is low,
the uncertainty on the reliability is high. The typical uncertainty
on the reliability estimate in a particular SNR bin is about 5%.

Also shown in Figure 2 is the histogram of separations be-
tween the injected and extracted positions. The 1σ positional
offset is approximately 230 arcsec in low background regions,
which is almost FWHM/10 at 30 GHz.

The completeness plots for the Monte-Carlo point sources
are shown for illustrative purposes for the half of the sky with the
lowest background RMS. Without factoring in the source size
distribution and flux density distribution of the real source pop-
ulations, as well as the fraction of sky observed with a particular
amount of exposure time, the completeness plot cannot be used
to directly infer the actual completeness of the ERCSC.

Figures 3 and 4 show similar plots for the Monte-Carlo
sources at 143 and 857 GHz. Interesting trends can be observed
by comparing these plots. The obvious one is an improvement
in positional accuracy with increasing frequency due to thespa-
tial resolution ofPlanck improving with increasing frequency.
Another interesting trend is the evolution in the range of back-
ground RMS values for the cleanest half of the sky, which is
provided in mJy in the numbers following “RMS:”. The num-
bers indicate that the background RMS is the largest at 857 GHz
due to the enhanced contribution of ISM emission.

The SNR values of the real sources are then estimated from
the ratio of FLUX/Background RMS or FLUXDET/Background
RMS. The reliability of the Monte-Carlo sources shown in these
Figures is applied to the real sources using the SNR value as the
comparison metric. These reliability values are between 0 and 1
although the minimum over all frequencies after the cumulative
reliability cuts are applied is 0.74. If an arbitrary sourcehas a
reliability of 0.74, it implies that 74% of the time, a sourcelying
in a patch of sky with similar sky noise will have an estimated
flux density that is accurate to within 30%.

Once the differential reliability of each source in the origi-
nal map has been estimated, the sources are sorted in decreas-
ing order of SNR. The differential reliability is converted to a
cumulative reliability by integrating the differential reliability
over increasing SNR values. We imposed a cumulative relia-
bility threshold of 90% and a maximum standard deviation in
the reliability of 10% for the ERCSC. This is the primary cri-
terion used to select high reliability sources. The reliability cut
is applied to both the FLUX/Background RMS as well as the
FLUXDET/Background RMS, since these are two distinct mea-
sures of flux density and the resultant catalogue is the unionof
the two reliability cuts. The union is selected to maximise source
counts since different measures of flux density tend to be more
accurate in different regimes as described in Sect. 5.1.

The technique that is chosen at each frequency is the one
that returns the maximum number of|b| > 30◦ sources above a
cumulative reliability of 90%. These happen to be our particular
implementation of PwS between 30 and 143 GHz and SExtractor
between 217 and 857 GHz.

2.3. Secondary Cuts in Selection of Sources

The primary selection criteria described above have been aug-
mented by a set of secondary cuts which take into account known
source artefacts in the maps.

First, the transit of bright sources (especially planets) across
the beam results in a pattern of bright and dark patches that is re-
peated every 36 arcmin along the scan pattern, in the upper HFI
bands (Planck HFI Core Team 2011b). These are due to the im-
precise removal of an instrumental artefact (the 4K cooler spec-
tral line). A subset of these patterns have been visually identified
in the maps and masks have been generated for those patches of
sky. These masks are reflected in the incomplete sky coveragein
Table 3. If more than 5% of the pixels within one FWHM from
the source fall on the mask, the source is rejected.

Second, there are known gaps in the maps associated with
the masking of planets and asteroids3. If sources have any of
their pixels within one FWHM falling on such a gap, the source
is rejected. This prevents edge effects due to the side lobes of
bright planets from being classified as sources and also prevents
the introduction of large errors in the photometry of sources.

Third, sources are also required to have either an aperture-
photometry SNR≥ 5 (FLUX/FLUX ERR ≥ 5) or a detection
method photometry SNR≥ 5 (FLUX/FLUXDET ERR ≥ 5).
The distinction is important, due to the fact that the photometry
from the PowellSnakes implementation consistently underesti-
mates the flux density for even marginally extended sources at
the lower frequencies.

Fourth, due to the requirements on the flux-density accuracy
in the ERCSC, the standard deviation in the photometric error
for the artificial sources with the same SNR as the real sourceis
required to be less than 30%.

Fifth, in order to remove extended sources associated with
substructure in the Galactic ISM, we eliminate non-circular

3 The following objects have been masked in the map making.
Asteroids: 10 Hygiea, 11 Parthenope, 128 Nemesis, 12 Victoria, 13
Egeria, 14 Irene, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna,
1 Ceres, 20 Massalia, 29 Amphitrite, 2 Pallas, 324 Bamberga,3
Juno, 41 Daphne, 45 Eugenia, 4 Vesta, 511 Davida, 52 Europa, 704
Interamnia, 7 Iris, 88 Thisbe, 8 Flora, 9 Metis. Comets: Broughton,
Cardinal, Christensen, d’Arrest, Encke, Garradd, Gunn, Hartley 2,
Holmes, Howell, Kopff, Kushida, LINEAR, Lulin, McNaught, NEAT,
Shoemaker-Levy 4, SidingSpring, Tempel 2, Wild 2.
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sources (ELONGATION≤3) in the upper HFI bands. These are
sources whose ratio of major to minor axis is greater than three.

As a sixth criterion, we also insist that the aperture flux den-
sity is positive (APERFLUX≥ 0), which alleviates problems due
to sources whose sky background estimate is biased high by the
presence of bright sources in the sky annulus. These sourceswill
have uncertain photometry and are therefore rejected.

The final ERCSC compilation is the list of sources which
have satisfied the primary Monte-Carlo based reliability criterion
as well as all the aforementioned secondary QA criteria. These
cuts imply that about half the sources in the uncut lower fre-
quency catalogues and about a third of the sources in the upper
frequency catalogues are classified as high reliability sources.

As mentioned earlier, each source has four different mea-
sures of flux density associated with it. These flux density val-
ues have not been colour corrected. Users should identify ap-
propriate colour corrections from Planck Collaboration (2011v)
and apply them to the flux densities. The absolute calibration
uncertainty of the HFI and LFI instruments is better than 7%
at all frequencies (Zacchei et al. 2011; Planck HFI Core Team
2011b). However, the requirements on the ERCSC are a pho-
tometric accuracy of 30%.

3. Characteristics of the ERCSC

3.1. Sky Coverage and Sensitivity

Table 3 shows the fraction of sky coverage, the beam FWHM
and the sensitivity of the ERCSC after all cuts have been ap-
plied. Although the 10σ values are quoted, sources which are
up to a factor of∼2 fainter and located in regions of low sky
background are included in the ERCSC since they meet the high
reliability criterion described in the previous section. As an il-
lustration, Figure 5 shows the flux density limit ofPlanck both
in the Galactic Plane (|b| < 10◦) and at high Galactic latitude
(|b| > 30◦) relative to other wide area surveys at comparable
frequencies. Also shown are the spectrum of typical sourcesof
foreground emission. Figures 6 show the all sky distribution of
sources colour coded by flux density.

3.2. Statistical Nature of Sources

In this section, we characterise the sources detected byPlanck at
each frequency. A source, called source one, at frequency one is
associated with a source, called source two, at frequency two, if
it lies within (FWHM1 + FWHM2) /2, if source two is the clos-
est source at frequency two to source one, andvice versa. The
results are summarised in Table 4. Naturally, at the lowest fre-
quency, 30 GHz, it is impossible to find associations at a lower
frequency and hence columns B & C are blank. Similarly, at the
highest frequency, 857 GHz, it is impossible to find associations
at a higher frequency and hence columns B & D are blank.

We find that at 30 GHz, where the radio spectrum might
have a significant optically thin synchrotron emission compo-
nent (which implies decreasing flux density with increasingfre-
quency), the number of sources seen in the adjacent passband
is 54%. Similarly, at the highest frequency where the thermal
dust emission has a steep spectrum of the formS ν ∼ ν3+β, the
fraction of 857 GHz sources seen at 545 GHz is predictably low
due to the relative sensitivities of the two bands. However,at the
intermediate frequencies, the fraction of sources which are asso-
ciated with sources in the adjacent bandpasses is high. Although
the fraction of associations is not 100%, we can use the spectral

information from these associations to characterise the nature of
sources at each frequency.

The spectral index is calculated by fitting a single power
law (S ν ∝ να) to the flux density of sources in adjacent bands.
For 30 GHz sources, only the 30 and 44 GHz flux densities of
sources are considered. Similarly, at 857 GHz, only the 545 and
857 GHz flux densities of sources are fit. For all the intermediate
bands, the frequencies just below and just above are included in
the fit, if the source is detected in the ERCSC.

Figure 7 shows the distribution of spectral indices for the
sources within|b| < 10◦ which are likely to be sources within our
Galaxy. At low frequencies, the median SED of sources in the
Galactic Plane is anS ν ∝ ν−0.5 spectrum. The distribution ofα
values significantly broaden between 30 and 100 GHz, likely due
to varying amounts of free-free emission along different sight-
lines. At 100 GHz, the spectrum becomes noticeably flatter with
a medianα = −0.25, partly due to the increasing contribution
of thermal dust emission and partly due to the large contribu-
tion from the CO line to the 100 GHz flux density. At 143 GHz,
the spectral index distribution shows the presence of both ra-
dio sources as well as the dominant contribution from sources
with thermal dust emission. Expectedly, at higher frequencies,
the distribution of spectral indices is narrow and is centred be-
tweenα = 2 andα = 3, tracing the Rayleigh-Jeans component
of dust emission. The reason the medianα is almost 3 at 217
GHz but evolves to 2 at 857 GHz is a selection effect. As can
be seen in Figure 5, thermal dust emission with emissivity>0
would increase faster with increasing frequency compared to a
Rayleigh-Jeans spectrum, relative to thePlanck sensitivity. As a
result, sources at the intermediate frequencies can span a broader
range of spectral indices than a faint source at 857 GHz which
would have an estimated spectral index only if it were detected
at 545 GHz, and thereby preferentially have a spectrum that is
less steep.

Figure 8 shows the distribution of spectral indices for the
sources at|b| > 30◦ which are likely to be extragalactic. At the
lower frequencies, the distribution of spectral indices iscentred
at α = 0. However, unlike the Galactic sources where the dis-
tribution broadens with increasing frequency, among the extra-
galactic sources, the spectral index distribution narrowsbetween
30− 100 GHz. There are two possible origins for this. One is
that the CO contribution is generally negligible for the extra-
galactic sources and that the larger distribution of spectral in-
dices around 100 GHz for the Galactic sources is simply a tracer
of variation of the CO contribution to the broadband photom-
etry. A second possibility is that the spectral index distribution
of Galactic sources is intrinsically broader while the extragalac-
tic sources at 100 GHz are dominated by a power-law distribu-
tion of electrons produced in relativistic shocks, which tend to
display a more uniform power-law index. At 143 and 217 GHz,
the radio source population continues to dominate althoughthe
dusty sources start to become significant. This is in contrast to
the Galactic population where the infrared luminous sources are
the dominant contributor. It is also striking that even at 353 GHz,
the radio source population continues to make a significant con-
tribution. At the highest frequencies, both the Galactic and ex-
tragalactic source populations show similar behaviour expected
from the Rayleigh-Jeans tail of dust emission.

A comparison with the statistical properties of sources
found in the South Pole Telescope 1.4mm and 2mm surveys
(Vieira et al. 2010) is warranted. The SPT surveys found that
∼30% of the 1.4mm sources are dusty while the majority are
synchrotron dominated. This is similar to the results for the high
Galactic latitude ERCSC sources;∼25% of the ERCSC 217 GHz
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Table 3.Planck ERCSC Characteristics

Freq [GHz] 30 44 70 100 143 217 353 545 857
λ [µm] 10000 6818 4286 3000 2098 1382 850 550 350
Sky Coverage in % 99.96 99.98 99.99 99.97 99.82 99.88 99.88 99.80 99.79
Beam FWHM [arcmin]a 32.65 27.00 13.01 9.94 7.04 4.66 4.41 4.47 4.23
# of Sources 705 452 599 1381 1764 5470 6984 7223 8988
# of |b| > 30◦ Sources 307 143 157 332 420 691 1123 2535 4513

10σb [mJy] 1173 2286 2250 1061 750 807 1613 2074 2961
10σc [mJy] 487 1023 673 500 328 280 249 471 813
Flux Density Limitd [mJy] 480 585 481 344 206 183 198 381 655

Notes. (a) The precise beam values are presented in Zacchei et al. (2011) and Planck HFI Core Team (2011b). This table shows the values which
were adopted for the ERCSC.(b) Flux density of the median>10σ source at|b| > 30◦ in the ERCSC whereσ is the photometric uncertainty of the
source.(c) Flux density of the faintest>10σ source at|b| > 30◦ in the ERCSC.(d) Faintest source at|b| > 30◦ in the ERCSC.

Table 4.ERCSC Source Characterisation

Frequency A B C D E F
30 705 ... ... 379 379 0.54
44 452 334 379 388 433 0.96
70 599 363 389 520 546 0.91
100 1381 496 520 1104 1128 0.82
143 1764 929 1106 1357 1534 0.87
217 5470 1067 1357 4190 4480 0.82
353 6984 2848 4189 4244 5585 0.80
545 7223 3404 4245 5363 6204 0.86
857 8988 ... 5365 ... 5365 0.60

Notes. (A) Total Number of sources detected(B) Number of sources detected both at frequency just below and just above given frequency
(C) Number of sources detected at frequency just below given frequency(D) Number of sources detected at frequency just above given frequency
(E) Number of sources detected either at frequency just below orjust above given frequency(F) Fraction of sources detected either at frequency
just below or just above given frequency

sources show an SED consistent with thermal dust emission. The
difference however is that the dusty sources observed by the SPT
dominate at fainter flux densities (<15 mJy). In contrast, the
dusty population in the ERCSC appears to be at brighter flux
densities with a median FLUX of 2.4 Jy, while the synchrotron
sources have a median FLUX of 0.8 Jy. This difference is be-
cause the ERCSC 217 GHz dusty sources are associated with
the Large Magellanic Cloud and are thereby brighter than the
typical dusty sources that the SPT has observed.

3.3. Individual Case Studies

The SED of representative sources of different classes that
can be found in the ERCSC are presented in this sub-
section. The selected sources are a pre-stellar core L1544
(Ward-Thompson et al. 2002), an extragalactic radio source
Centaurus A, a synchrotron dominated radio galaxy Pictor A,
IRC+10216 which is the prototype of stars with dust shells,
the starbursting ultraluminous infrared galaxy Arp 220 andthe
cold stellar core ECC G176.52-09.80. The sensitivity and wave-
length coverage ofPlanck enables synchrotron emission, ther-
mal bremsstrahlung emission, thermal dust emission as wellas
the transition frequencies between the emission processesto be
studied. Figure 9 shows the SED of these representative sources.

Since some of these sources are extended at thePlanck an-
gular resolution, the ERCSC Gaussian fit flux densities (i.e.
“GAUFLUX”) are shown, except in the cases where the fit
failed in the low signal-to-noise regime. In those cases theaper-
ture photometry values (i.e. “FLUX” in the ERCSC) are plot-
ted. Uncertainties include the Monte-Carlo estimate of fluxden-

sity uncertainties. The plotted SED also show IRAS and/or ISO
flux densities at far-infrared wavelengths.Planck can clearly re-
veal the contribution of cold dust at wavelengths longward of
IRAS/ISO and observe the transition from thermal dust emis-
sion to synchrotron/free-free radio emission.

4. Validation of the ERCSC

At the three lowest frequencies ofPlanck, it is possible to val-
idate ERCSC source identifications, reliability, positional accu-
racy and flux density accuracy using external data sets, particu-
larly large-area radio surveys. This external validation was un-
dertaken using the following catalogues and surveys: (1) full sky
surveys and catalogues:WMAP 5-year catalogue (Wright et al.
2009) and the NEWPS catalogue, based on earlierWMAP re-
sults (Massardi et al. 2009); (2) in the southern hemispherethe
AT20G survey at 20 GHz (Murphy et al. 2010); (3) in the north-
ern hemisphere, where no large-area, high-frequency survey like
AT20G is available, we used CRATES (Healey et al. 2007).

An ERCSC source was considered reliably identified if it
falls within a circle of radius one half thePlanck beam FWHM
which is centered on a source at the corresponding frequency
in one of the above catalogs. This means of identification was
employed at|b| > 5◦ where confusion was less of a problem
and the majority of the sources were extragalactic. Very few
such sources were spatially resolved byPlanck. Table 5 shows
the percentage of sources thus identified. For the three lowest
Planck frequencies and for|b| > 5◦, the ERCSC clearly meets
its 90% reliability specification as measured by this external val-
idation. Table 5 also displays results of an attempt to assess re-
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Fig. 9. The SED of representative source classes in the ERCSC.
The plot shows a pre-stellar core L1544, an extragalactic ra-
dio source Centaurus A, a synchrotron dominated radio galaxy
Pictor A, IRC+10216 which is the prototype of stars with dust
shells, the starbursting ultraluminous infrared galaxy Arp 220
and the cold stellar core ECC G176.52-09.80. IRAS or ISO flux
densities are shown as solid squares while thePlanck flux den-
sities are shown as stars. ThePlanck ERCSC enables a diverse
class of sources to be studied over a broad range of frequencies
and flux densities.

liability of ERCSC sources in the Galactic Plane at|b| < 5◦.
Here, an ERCSC source was considered reliably identified if it
falls within 5 arcmin from Galactic objects like planetary neb-
ulae, supernova remnants, HII regions (or in a few cases, extra-
galactic sources that happen to be found at low Galactic latitude).
The percentage of identifications in the Galactic Plane is lower,
but still leaves the overall reliability figures at greater than 90%,
meeting the ERCSC specification for reliability.

We also examine the positional accuracy of ERCSC sources
by comparing positions taken from the ERCSC with those deter-
mined quasi-simultaneously using the Very Large Array (VLA)
of the US National Radio Astronomy Observatory. ERCSC po-
sitions were also compared to the positions of several hundred
bright quasars (Figure 10) at frequencies of 353 GHz and below
where a significant fraction are detected. The median scatter in
offset for frequencies 30–217GHz was 2.0, 1.7, 1.1, 0.8, 0.7, 0.3
and 0.35 arcmin. The results of these two tests are consistent, and
suggest that the ERCSC clearly meets its specification of RMS
scatter in positions being less than FWHM/5.

A comparison between the ERCSC flux densities with VLA
measurements of the same source has also been made (Figure
11) and is discussed in Planck Collaboration (2011j). At both
30 and 44 GHz the two flux density scales appear to be in good
overall agreement with any difference attributable partly to noise
in the Planck measurements and partly due to variability in the
radio sources, since thePlanck and VLA measurements were
not exactly simultaneous. At 70 GHz however, the comparison
is challenging since the VLA measurements are made at 43 GHz
and an extrapolation needs to be made assuming some spectral
index for the source. If a simple extrapolation to a 70 GHz flux
density is made based on the VLA 22–43 GHz spectral index,
the extrapolated VLA values are either too high or the flux den-
sity scale ofPlanck is too low. The most likely interpretation of
this discrepancy is that the spectral index of radio sourcesde-
tected byPlanck steepens at frequencies above 44 or 70 GHz. If,

for instance, a spectral index change ofα = −0.5 is allowed at
frequencies above 43 GHz, the agreement between the extrapo-
lated and measured 70 GHz fluxes would be entirely acceptable
(Planck Collaboration 2011j).

A comparison between the ERCSC sources and theWMAP
point source catalogue was also undertaken. TheWMAP seven-
year catalogue (Gold et al. 2011) contains a total of 471 sources
in the five WMAP bands. We have compared theWMAP 5σ
sources at 33, 41, 61, 94 GHz with the sources in the ERCSC
at 30, 44, 70 and 100 GHz, respectively. A search radius corre-
sponding to the FWHM of theWMAP beam at each frequency
(0.66◦, 0.51◦, 0.35◦, 0.22◦ at 33 to 94 GHz channels) is used
to find a match ofWMAP sources in the ERCSC. Figure 12
shows the histogram distribution ofWMAP flux densities; the
WMAP 5σ sources are shown in gray, and the ones with an
ERCSC match are in red. The ERCSC include 88%, 62%, 81%
and 95% of theWMAP 5σ sources at the four bands, individ-
ually. Figure 13 is a similar plot, but shows the histogram dis-
tribution of the ERCSC flux densities: the ERCSC sources are
shown in gray, and the ones with aWMAP match are in red. The
WMAP seven-year point source catalogue mask which excludes
the Galactic Plane and the LMC/SMC region has been applied
to the ERCSC beforehand to ensure the same sky coverage. It
is evident that the ERCSC is a much deeper and more complete
catalogue than theWMAP 7 year catalog, especially at the 100
GHz channel.

TheWMAP 5σ detections that are missed in the ERCSC at
30, 70 and 100 GHz are further investigated. The 44 GHz chan-
nel is skipped since it is known to have lower sensitivity com-
pared to theWMAP 7-year data. It is found that at 100 GHz, all
the missedWMAP sources can be explained by either theWMAP
source not having a 5 GHz counterpart or only being weakly as-
sociated with a 5 GHz source suggesting that theWMAP source
might be spurious. At 70 GHz,∼ 41% of the unmatched sources
are variable (this is a lower limit as the variability info was ob-
tained from theWMAP five-year catalog, which is a subset of the
WMAP seven-year catalog),∼ 13% of the unmatched sources
have no 5 GHz ID or are only loosely associated with a 5 GHz
source,∼ 38% are recovered after the CMB subtraction. At 30
GHz,∼ 17% of the unmatched sources are variable (again, this
is only a lower limit),∼ 34% of the unmatched sources have no
solid identification,∼ 54% are recovered after the CMB sub-
traction. This analysis suggests that the reason these sources
are not detected inPlanck is a combination of source variabil-
ity, map sensitivity (different scanning strategy ofWMAP and
Planck result in a difference in the local background noise; also
the ERCSC is based on 1.6 sky surveys whereas theWMAP cat-
alogue is based on 14 sky surveys), and incompleteness of the
ERCSC.

The similarity between theWMAP frequencies andPlanck
bands also motivates a comparison between their flux densities
which is shown in Figure 14. Overall we find there is no sys-
tematic difference between theWMAP and ERCSC flux densi-
ties at the corresponding bands. The significant scatter in Figure
14 again indicates that variability is an issue. There is no vari-
ability analysis of theWMAP seven-year point sources, but an
analysis of the variability on the five-yearWMAP point sources
mentioned above, shows that a high fraction of the sources are
variable at greater than 99% confidence, and these are in general
the brighter sources (Wright et al. 2009).
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Table 5.ERCSC Source Validation

Frequency # at|b| > 5◦ # Identified # at|b| < 5◦ # Identified Total # # Identified
30 563 547 (97%) 142 95 (67%) 705 642 (91%)
44 278 265 (95%) 176 144 (82%) 454 409 (90%)
70 320 289 (90%) 280 ... 600 ...

5. The ERCSC: Access, Contents and Usage

The ERCSC is available from both the ESAPlanck Legacy
Archive4 and the NASA Infrared Science Archive5 (IRSA).

The source lists contain 35 columns per source at the LFI
bands and 36 columns at the HFI bands. The 857 GHz source
list has six additional columns which consist of the band-filled
flux densities and flux uncertainties at the three adjacent lower
frequencies, 217, 353 and 545 GHz for each source detected at
857 GHz. The locations of sources are provided in Galactic co-
ordinates. In addition, we also provide for each detected source,
a postage-stamp cutout of the source from the all sky map of
the corresponding frequency after the CMB has been subtracted.
The size of the cutout is a square of side 4×FWHM at the corre-
sponding frequency. The primary purpose of these cutouts isto
aid in the visual validation of sources. We also provide notes
in a text file, one per frequency, for particular sources in the
catalogues which state associations of the ERCSC source with
sources in ancillary catalogues (e.g. IRAS, GB6, WMAP) as
well as potential variability information.

Including the ECC and ESZ, the entire data release thus con-
sists of 11 source list files, 11 all-sky source distributionmaps,
11 notes files and postage-stamp cutouts in JPEG format of all
the sources detected at the nine individual frequencies as well as
in the ECC list. No postage stamp cutouts are provided for the
ESZ.

5.1. Catalogue Contents and Usage

The key columns in the catalogues are:

1. source identification: NAME (string)
2. position: GLON, GLAT, POSERR which gives the Galactic

coordinates in degrees and the estimated 1σ positional un-
certainty in arcminutes.

3. flux density: FLUX, FLUXERR in mJy measured in a cir-
cular aperture with radius equal to the nominal FWHM of
the beam.

The one additional column for the HFI bands compared to the
LFI bands is due to the inclusion of a cirrus estimate, described
below.

Individual sources can be searched for in the list either by
Galactic coordinates (GLON, GLAT), or by the equivalent J2000
equatorial coordinates (RA, DEC). The 1σ positional uncer-
tainty for a source, given by POSERR in arcminutes, depends
on the local background RMS and SNR. This uncertainty is only
a measure of the uncertainty for fitting the location of the source
in the maps and does not take into account any astrometric off-
set in the maps. Furthermore, POSERR is measured from the
positional uncertainty of artificial point sources injected into the
maps. As a result, sources might have larger positional uncer-
tainties which are not reflected in this value (See Section 2).

When a source is classified as extended, we set
EXTENDED=1. This implies that the square root of the

4 http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive
5 http://irsa.ipac.caltech.edu/Missions/planck.html

product of the major and minor axis of the source is 1.5 times
larger than the square root of the major and minor axis of the
estimatedPlanck point spread function at the location of the
source, i.e.,

√
GAU FWHMMAJ ×GAU FWHMMIN

> 1.5×
√

BEAM FWHMMAJ × BEAM FWHMMIN (3)

In the upper HFI bands, sources which are extended tend to be
associated with structure in the Galactic interstellar medium al-
though individual nearby galaxies are also extended sources as
seen byPlanck [see Planck Collaboration (2011l)]. The choice
of the threshold being set at 1.5 times the beam is motivated
by the accuracy with which source profiles can be measured
from maps where the Point Spread Function is critically sam-
pled (1.7′ pixel scale for a∼4′ FWHM). Naturally, faint sources
for which the Gaussian profile fit might have failed do not have
the EXTENDED tag set.

As described in Sec. 2.1.3, four measures of flux density
are provided in mJy. For extended sources, both FLUX and
PSFFLUX will likely be significant underestimates of the true
source flux density. Furthermore, at faint flux densities corre-
sponding to low signal-to-noise ratios (less than 20), the PSF fit
might have failed. This would be represented either by a negative
flux density or by a significant difference between the PSFFLUX
and FLUX values. In general, for bright extended sources, we
recommend using the GAUFLUX and GAUFLUXERR values
although even these might be biased high if the source is located
in a region of complex, diffuse foreground emission.

Uncertainties in the flux density measured by each tech-
nique are reflected in the corresponding “ERR” column. The
flux uncertainties derived from the artificial point sourcesin-
jected into the maps are available in MCQAFLUX ERR.
MCQA FLUX ERR is the standard deviation of the dimension-
less (S input − S output)/S input for input and output flux densitiesF
based on the aperture flux density (i.e., FLUX) at the signal-to-
noise ratio of the source. We believe that the most conservative
flux uncertainty is the quadrature sum of the Monte-Carlo flux
uncertainty and the “ERR” value relevant for the appropriate
flux density (FLUX, PSFFLUX, GAUFLUX or FLUXDET).

MCQA FLUX BIAS provides the median in the difference
between the injected flux and extracted aperture flux of the arti-
ficial point sources. In principle, the bias should be close to zero
if the aperture corrections are precisely known, the aperture is
perfectly centred on each source, and the background can be pre-
cisely estimated. In practice, there is an offset of a few percent,
which can become large at the lowest signal-to-noise ratiosor in
high-background regions. This is a median offset estimated as a
function of SNR from the artificial point sources, and has already
been applied to the FLUX value of all sources. The bias correc-
tion has been applied such that the FLUX in the catalogue is the
measured flux density divided by (1-MCQAFLUX BIAS) and
increases the flux density values by about 5%.

The 1σ point source flux uncertainty due to structure in the
background is given in BACKGROUNDRMS in units of mJy.
At the lowest frequencies this is a combination of CMB noise
and instrumental noise, with the latter dominating. At 143 GHz,
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Fig. 15.Bandpasses of HFI with the location of bright CO rota-
tional lines (J = 1 → 0, 2 → 1, 3 → 2, 4 → 3, and 5→ 4
from left to right) shown as a horizontal black line with tick
marks. The CO lines can introduce a significant positive biasin
the flux density of the sources, particularly those associated with
Galactic star-forming regions. The effect is the most significant
at 100 GHz where the flux density may be boosted by more than
50%. See Planck HFI Core Team (2011b) for details.

the noise is dominated by the CMB. At higher frequencies, it is
dominated by Galactic ISM. The ratio of source flux density to
BACKGROUND RMS is the primary parameter which is used
to calibrate the RELIABILITY of sources.

The dates on which the source was observed are included
in DATESOBS (UTC) in the yyyymmdd format. This will be
useful in the analysis of time-variable sources. The flux-density
value in the ERCSC is an average over all the dates of observa-
tions.

Sources in the HFI bands each have a CIRRUS number
which is based on the number of sources (both low and high
reliability) within a 2◦ radius of the source, in raw 857 GHz
catalogues derived from the maps. The number has been nor-
malised to a peak value of one. The normalisation factor is
in practice, derived from the number density of sources in the
Large Magellanic Cloud region where the maximum number of
857 GHz sources is located.

Finally, each source has a CMBSUBTRACT flag. This flag
has values of 0, 1 or 2. The value is 0 if the source is detected
in the CMB-subtracted maps and has an aperture flux difference
|S intensity− S nocmb|/S intensity < 0.30. CMBSUBTRACT=1 if the
source is detected in the CMB subtracted maps but has a flux dif-
ference of greater than 30%. CMBSUBTRACT=2 if the source
is not detected in the CMB subtracted maps. CMB subtraction
results in artefacts in the maps which might remove real sources.
It is recommended that a conservative user who wants a guaran-
tee of source detection in follow-up observations neglect sources
with CMBSUBTRACT=2.

5.2. Cautionary Notes in Usage of Catalogues

In this section, we list some cautionary notes associated with
usage of the ERCSC list.

– Statistical Character: The ERCSC list is an early list of
highly reliable sources from the firstPlanck all sky survey.
It is not a flux density limited sample or even a complete

sample of sources and therefore care should be taken before
undertaking statistical studies such as source counts. This is
partly due to the fact that the scan strategy results in sig-
nificant variation in instrumental sensitivity as a function of
position on the sky. In addition, the relative contributionof
astrophysical sources of “noise” such as the CMB and the
emission from the Galactic interstellar medium (ISM) vary
across thePlanck frequencies. The CMB contribution peaks
between 100 and 143 GHz while the ISM contribution peaks
above 857 GHz. In conjunction with the varying spatial res-
olution, this results in varying limits to the sensitivity of
sources that can be detected both as a function of position
on the sky and as a function of frequency. The Monte-Carlo
analysis presented later, does quantify this variation in sen-
sitivity for the overall catalogue. However, the estimatesfor
the fraction of sky area above a particular completeness limit,
have not been factored into the catalogue.

– Variability: At radio frequencies, many of the extragalactic
sources are highly variable. A small fraction of them vary
even on time scales of a few hours based on the brightness
of the same source as it passes through the differentPlanck
horns. Follow-up observations of these sources might show
significant differences in flux density compared to the values
in the data products. Although the maps used for the ERCSC
are based on 1.6 sky coverages, the ERCSC provides only
a single average flux density estimate over allPlanck data
samples that were included in the all sky maps and does
not contain any measure of the variability of the sources.
ThePlanck Quick Detection System (QDS; Aatrokoski et al.
2010) attempts to quantify the variability of sources seen by
Planck. The information from the QDS has been included in
the notes for certain sources.

– Contamination from CO: At infrared/submillimetre frequen-
cies (100 GHz and above), thePlanck bandpasses straddle
energetically significant CO lines (Figure 15). The effect is
the most significant at 100 GHz, where the line might con-
tribute more than 50% of the measured flux density. Follow-
up observations of these sources, especially those associated
with Galactic star-forming regions, at a similar frequencybut
different bandpass, should correct for the potential contribu-
tion of line emission to the continuum flux density of the
source. See Planck HFI Core Team (2011b) for details.

– Photometry: Each source has multiple measures of photom-
etry FLUX, GAUFLUX, PSFFLUX and FLUXDET as de-
fined above. The appropriate photometry to be used depends
on the nature of the source. For sources which are unresolved
at the spatial resolution ofPlanck, FLUX and PSFFLUX
are most appropriate. Even in this regime, PSF fits of faint
sources fail and consequently these have a PSFFLUX value
of “NaN” (“Not a Number”). For bright resolved sources,
GAUFLUX might be most appropriate although GAUFLUX
appears to overestimate the flux of sources close to the
Galactic plane due to an inability to fit for the contribu-
tion of the Galactic background at the spatial resolution of
the data. For faint resolved sources in the upper HFI bands,
FLUXDET, which is the flux density in an elliptical Kron
aperture provided by SExtractor, might give the most accu-
rate numbers. The user should also note that the absolute cal-
ibration of flux-density values are required to be accurate to
within about 30% although the signal-to-noise of the sources
are much higher.

– Cirrus/ISM: A significant fraction of the sources detected
in the upper HFI bands could be associated with Galactic
interstellar medium features or cirrus. TheIRAS 100µm
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surface brightness in MJy sr−1 for each of the sources,
which is commonly used as a proxy for cirrus, is avail-
able through a search of the ERCSC with IRSA. Candidate
ISM features can also be selected by choosing objects with
EXTENDED=1 although nearby Galactic and extragalactic
sources which are extended atPlanck spatial resolution will
meet this criterion. Alternately, the value of CIRRUS in the
catalogue can be utilised to flag sources which might be clus-
tered together and thereby associated with ISM structure.

6. Astrophysical Source Classes Identified by their
Multifrequency Signature

In addition to the single frequency catalogs described in the pre-
vious sections, there are two other source catalogs that arepro-
vided as part of the ERCSC. These two additional catalogs lever-
age the spectral signature of two specific classes of astrophysi-
cal sources through thePlanck bands and are generated using
specialized multifrequency algorithms which have been devel-
oped within thePlanck Collaboration. These are a list of galaxy
clusters detected through the Sunyaev-Zeldovich effect and cold
pre-stellar cores identified by the derived far-infrared color tem-
perature in fits to thePlanck photometry.

6.1. The Early Sunyaev-Zeldovich Cluster Catalogue

The Planck Early Release Sunyaev-Zeldovich (ESZ) clus-
ter sample [described in more detail in Planck Collaboration
(2011d)] is a list of 189 SZ cluster candidates which are de-
tected by their multi-frequency signature in thePlanck bands.
The thermal SZ effect is the result of energetic electrons in
the hot intra-cluster medium inverse-Compton scattering off the
CMB photons. The net result is a distortion in the shape of the
CMB spectrum, which results in a deficit of flux density below
∼220 GHz and an increment in flux density at higher frequencies
(Sunyaev & Zel’dovich 1972; Carlstrom et al. 2002). By utilis-
ing a matched multi-frequency filter, the spectral signature of
this distortion can be detected and measured in thePlanck all-
sky maps, which enables cluster candidates to be detected.

The ESZ sample generated as part of thePlanck early data
release is the result of a blind multi-frequency search in the
all sky maps, i.e., no prior positional information on clusters
detected in any existing catalogues was used as input to the
detection algorithm. The ESZ sample is produced using one
of the four matched multi-frequency filter (MMF) algorithms
available within thePlanck collaboration (hereafter MMF3; see
Melin et al. (2010) for details of the comparison of the cluster
extraction algorithms available within the collaboration). MMF3
is an all-sky extension of the algorithm described in Melin et al.
(2006) and is run blindly over the six HFI frequency maps. The
technique first divides the all-sky maps into a set of overlap-
ping square patches. The matched multi-frequency filter then
optimally combines the six frequencies of each patch, assuming
the SZ frequency spectrum and using the Arnaud et al. (2010)
pressure profile as the cluster profile. Auto- and cross- power
spectra used by the MMF are directly estimated from the data.
They are thus adapted to the local instrumental noise and astro-
physical contamination such as ISM emission. For each patch,
the scale radius of the cluster profile is varied to maximise the
signal-to-noise ratio of each detection. The algorithm thus as-
signs to each detected source an estimated size and an integrated
flux. The detected sources extracted from individual patches are
finally merged into an all-sky cluster list. Non-SZ sources cap-

tured by the MMF algorithm can contaminate the list and an
additional step of validation of the detection is needed.

Unlike the individual frequency source list or the ECC list,
which are validated through a Monte-Carlo technique, the re-
liability of the ESZ list has been estimated through a valida-
tion process based on internal checks and on cross-checks with
ancillary optical/near-infrared and X-ray cluster catalogues or
images. Cross-matches with the Meta-Catalogue of X-ray de-
tected Clusters of galaxies (MCXC hereafter; Piffaretti et al.
2010), Abell and Zwicky catalogues, SDSS-based catalogues,
MAXBCG and Wen et al. (2009) and a compilation of SZ ob-
served clusters were undertaken. For each known X-ray cluster,
several entries are available among which the identifiers, red-
shift, coordinates, total massM500, and radiusR500 were used
during the external validation process. R500 is the radius that en-
compasses a mean matter density which is 500 times the crit-
ical density at the corresponding redshift. R500 is less than the
virial radius of the cluster.M500 is the mass withinR500. Further
searches in Virtual Observatory (VO) and in logs of observa-
tories were performed. The goal of this search was to iden-
tify cluster candidates which might already have ancillarydata
available for community access. Of the 189 cluster candidates,
169 are associated with known X-ray or optical clusters and the
Planck data provides the first measure of the SZ signature for the
majority of them. In addition to the cross-check with ancillary
data, follow-up observations with XMM confirmed an additional
11 new clusters which are described in Planck Collaboration
(2011e). 9 other new clusters have not been confirmed in the
X-ray as yet.

A full description of the validation effort is in
(Planck Collaboration 2011d). Figure 16 shows the all sky
distribution of the clusters and cluster candidates while
Figure 17 shows their redshift distribution. Table 6 gives the list
of columns in the ESZ catalogue.

All clusters have aPlanck name which is given in the column
NAME. This name is constructed from GLON and GLAT, the
best estimated Galactic coordinates of the SZ signal. SNR gives
the detection’s signal-to-noise ratio as defined by the matched
multi-filter method MMF3.

When aPlanck SZ cluster candidate is identified as an X-
ray cluster in the MCXC the coordinates of the X-ray counter-
part (i.e., the X-ray centroid) is given. The same positional infor-
mation is given for thePlanck cluster candidates confirmed by
XMM-Newton observation (apart from one candidate identified
with a double cluster, see notes below). For those clusters with an
X-ray counterpart, the Compton-Y parameter, which is the inte-
gral of the Compton-y over the cluster area, is re-extracted from
thePlanck maps using the X-ray centroid coordinates and X-ray
size THETAX as priors, yielding the value YPSX and its er-
ror Y PSX ERR. The Compton-Y parameter measured using the
X-ray position and size priors is known to be more robust than
the blind value estimated without priors (Planck Collaboration
2011d).

For cluster candidates without available estimates of X-ray
position or size, the derived SZ parameters THETA, Y, and the
associated errors THETAERR and YERR are the values re-
turned directly by the matched filter. These are likely to be more
uncertain than cases where the cluster has been confirmed in the
X-ray data. THETA and THETAX are the estimated angular
size of the cluster at 5 times R500.

Notes on individual clusters can be found in
Planck Collaboration (2011v). These notes include cross-
matches with ERCSC sources as well as the origin of the
redshift.
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Table 6.ESZ Catalogue Columns

Keyword Type
INDEX Index of clusters i.e., 1, 2, 3...
NAME Planck name of cluster candidate
GLON Galactic Longitude fromPlanck (deg)
GLAT Galactic Latitude fromPlanck (deg)
RA Right Ascension (deg) fromPlanck (J2000)
DEC Declination (deg) fromPlanck (J2000)
SNR Signal-to-noise ratio returned by the matched multi-filter (MMF3)
ID External identifier of cluster e.g., Coma, Abell etc.
REDSHIFT Redshift of cluster from the MCXC X-ray cluster compilation (Piffaretti et al. 2010) unless stated otherwise in the notes
GLON X Galactic Longitude of the associated X-ray cluster (deg)
GLAT X Galactic Latitude of the associated X-ray cluster (deg)
RA X Right Ascension (deg) of the associated X-ray cluster (J2000)
DEC X Declination (deg) of the associated X-ray cluster (J2000)
THETA X Angular size (arcmin) at 5R500 from X-ray data.
Y PSX Integrated Compton-Y (arcmin2) at X-ray position and within 5R500 (THETAX)
Y PSX ERR Uncertainty in YPSX
THETA Estimated angular size (arcmin) from matched multi-filter (MMF3)
THETA ERR Uncertainty in THETA
Y Integrated Compton-Y (arcmin2) at Planck position and within THETA from matched multi-filter (MMF3)
Y ERR Uncertainty in Y

Fig. 16. Plot showing the all sky distribution of the ESZ cluster
candidates colour coded by signal-to-noise ratio. Sourcesclose
to the Galactic Plane have been excluded since the spurious frac-
tion is high.

6.2. The Early Cold Cores Catalogue

Pre-stellar cloud cores represent the transition from turbulence
dominated large scales to the gravitation dominated protostel-
lar scales and are therefore a crucial step in the process of star
formation. Imprinted in their structure and statistics is informa-
tion of the properties of the parental clouds and the core for-
mation processes where interstellar turbulence, magneticfields,
self-gravity, and external triggering all play a role.

ThePlanck all-sky submillimetre/millimetre survey has both
the very high sensitivity and spatial resolution required for the
detection of compact cores. The highest frequency channelsat
857, 545 and 353 GHz cover the frequencies around and long-
wards of the intensity maximum of the cold dust emission:
Bν(T = 10K)ν2 peaks at a wavelength close to 300µmwhile,
with a temperature ofT ∼ 6 K, the coldest dust inside the cores
has its maximum close to 500µm. WhenPlanck data are com-
bined with far-infrared data like theIRAS survey, the observa-
tions enable accurate determination of both the dust tempera-
tures and its spectral index. For historical reasons, we use“Cold
Cores” to designate the entries in the ECC, since pre-stellar
cores were a major scientific goal of this product. However, as
two companion papers (Planck Collaboration 2011r,s) demon-

Fig. 17. Redshift distribution of ESZ cluster candidates. ESZ
clusters which do not have a redshift are shown as the hatched
region atz = 0.01.

strate, most of these entries are more correctly described as “cold
clumps”, intermediate in their structure and physical scale be-
tween a true pre-stellar core and a molecular cloud. This is of
course to be expected as thePlanck effective beam dictates a
preferred angular scale for ECC detection, and the selection pro-
cess places their emission peak in the submm range.

In order to detect the cold cores, a warm background deter-
mined by the scaledIRAS 100µm emission is subtracted from
thePlanck maps at 217, 353 and 545 GHz (Montier et al. 2010;
Planck Collaboration 2011s). The scaling factor is determined
by measuring the sky background in a disk of 15 arcmin outer
radius. We search for the presence of a source in the residual
emission, and perform photometry at the location of detected
sources. The band-merging process positionally matches objects
in the 353 GHz detection list, which contains the least number
of entries, against both the 545 and 857 GHz catalogues usinga
5′ matching radius. Sources only detected in one or two bands
are discarded. The SNR and position of the detection having the
greatest SNR are assigned to the band-merged entry.
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Fig. 18. Sky distribution of ECC detections having SNR≥ 15
and T≤ 14 K is shown. The symbols are colour-coded by tem-
perature using the scale shown on the right.

Aperture photometry is performed on theIRAS 100µm and
353, 545, and 857 GHz maps using a source radius of five ar-
cminute and a background annulus spanning radii from five to
ten arcminutes. An unconstrained three-parameter (T,β, and
S857) greybody is fit to the four-band aperture photometry with
the fitted temperatures used in the source selection process.

As for the ERCSC, a Monte-Carlo process is used to define
signal-to-noise thresholds where the derived temperatures are
consistent with being<14 K. A full description of the process
can be found both in Planck Collaboration (2011v). The deliv-
ered ECC catalogue consists of 915 objects (Figure 18) meeting
the ECC selection criteria of SNR≥ 15 and T≤ 14 K., after re-
moval of selected sources having obviously discrepant SEDsor
are closely positionally matched to bright AGN, e.g., 3C 273.
The columns in the ECC catalogue are shown in Table 7.

It should be noted that the derived temperatures of the Cold
Cores are degenerate with the derived emissivity due to the ab-
sence of more than one flux-density estimate at wavelengths
shortward of the peak in the blackbody spectrum. This issue is
discussed in detail in Planck Collaboration (2011s).

Further information on the ECC is given in
Planck Collaboration (2011v,s). Additional remarks on in-
dividual sources, including cross-matches with ERCSC sources
are provided in the notes file that accompany the individual
catalogs (see Sect. 5).

7. Concluding Remarks

Planck is the third generation space based CMB experiment with
more than an order of magnitude higher spatial resolution than
COBE and with a broader range of frequency coverage than
WMAP. The completion of the first sky survey in April 2010
yields a unique opportunity to study the classes of astrophys-
ical sources that are foreground contributors to the CMB. The
ERCSC is a catalogue with> 90% reliability and is based on 1.6
sky coverages byPlanck. It has been produced with a very rapid
turnaround time to facilitate follow up observations with existing
and future telescope facilities. ThePlanck Collaboration expects
that the diversity of sources present in the ERCSC, ranging from
protostellar cores to SZ selected clusters, radio galaxiesand lu-
minous star-forming galaxies, will provide a rich opportunity for
follow-up studies of interesting astrophysical phenomena.
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Mandolesi, N., Bersanelli, M., Butler, R. C., et al. 2010, A&A, 520, A3+
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Fig. 2. Plots showing the results of the Monte-Carlo analysis at 30 GHz with the PwS algorithm. The upper two rows shows the
results when the flux density of sources is from FLUXDET whilethe lower two rows shows the results when the flux density of
sources is from FLUX. The set of 3 plots in the top-left and bottom-left corner show the all-sky flux-density uncertainty,differential
reliability and differential completeness of the Monte-Carlo sources as a function of SNR where signal may be FLUX or FLUXDET
and the noise is the background RMS. The set of four plots at the top right and bottom right show (left to right, top to bottom) the
fractional flux density uncertainty, (S in − S out)/S in (see Sect. 5.1), the distribution of the absolute positional offset, differential
positional offset, as well as completeness and contamination (1−reliability converted to a percentage) as a function of flux density
for the half of the sky with the lowest sky background RMS. Therange of sky background RMS converted to a point source flux
density uncertainty, is shown in the inset in mJy. The primary source selections in the catalogues are based on the reliability vs
output flux density/background RMS plots such that the cumulative reliability (integral of the differential reliability) is greater than
90%.
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Fig. 3. As in Figure 2 but at 143 GHz with the PwS algorithm.
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Fig. 4. As in Figure 2 but at 857 GHz with the SExtractor algorithm.
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Fig. 5. ThePlanck ERCSC flux density limit quantified as the faintest ERCSC source at|b| < 10◦ (dashed black line) and at|b| > 30◦

(solid black line) is shown relative to other wide area surveys. Also shown are the spectra of known sources of foregroundemission
as red lines; these include a Sν ∼ ν−0.7 synchrotron component,ν−0.1 free-free component, a Rayleigh-Jeans component and aν2

emissivity blackbody of temperature 18 K. The ERCSC sensitivity is worse in the Galactic Plane due to the strong contribution of
ISM emission especially at submillimetre wavelengths. In the radio regime, the effect is smaller. The faintestWMAP 7 year 5σ
sources are derived from the catalogue of Gold et al. (2011);Wright et al. (2009). Although the flux density limits ofWMAP and
Planck appear to be comparable at the lowest frequencies, thePlanck ERCSC is more complete as discussed in Section 4. The GB6
sensitivity value is from Gregory et al. (1996), AT20G flux limit from Murphy et al. (2010), SCUBA-2 All Sky Survey (SASSy)
limit from the Joint Astronomy Center website while theIRAS flux density limits are from theIRAS explanatory supplement
(Beichman et al. 1988).
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Fig. 6. Sky distribution of sources in Galactic coordinates at all nine Planck frequencies. Sources are colour coded by flux density.
In the Galactic Plane, due to strong emission from the ISM, there is a paucity of faint sources. The higher density of sources in the
LMC region is also noticeable.
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Fig. 7. The distribution of spectral indices (α whereS ν ∝ να) for sources within 10◦ of the Galactic Plane. Each panel shows the
spectral index distribution for ERCSC sources at the correspondingPlanck band.
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Fig. 8. The distribution of spectral indices for sources above 30◦ of the Galactic Plane, likely to be dominated by extragalactic
sources.
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Fig. 10. Matches to quasars as a measure of positional offsets in the ERCSC 30 to 353 GHz catalogues. The top row shows 30and
44, the second row 70 and 100, the third row 143 and 217, and thefinal row 353 GHz. There are insufficient numbers of detected
quasars at the upper HFI frequencies.
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Fig. 11.The flux density of a subset of ERCSC sources at 30 and 44 GHz, with color corrections, compared to the flux density ob-
tained from VLA 22 and 43 GHz observations of the same sourcestranslated to thePlanck effective frequency (Planck Collaboration
2011j). The over-plotted lines are the first order polynomial resulting from an uncertainty weighted fit to the VLA and ERCSC flux
densities which partially takes into account Eddington bias. The slope of the fit is 1.08 at 30 GHz and 1.02 at 44 GHz indicating
that both measurements are in good agreement. The median ratio of the ERCSC flux density to the VLA flux density is 1.15 at both
frequencies. The difference is most likely attributable to a combination of effects including cross-calibration uncertainties, contri-
bution from fainter sources within thePlanck beam, variability and the fact that the smaller beam VLA measurements would be
less sensitive to low surface brightness emission beyond the 2− 4′′ primary VLA beam although care has been taken to use mainly
unresolved sources.
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Fig. 12.Histogram distribution ofWMAP flux densities for allWMAP 5σ sources in each band (gray region). The sources that are
detected in the ERCSC are shown as the red histogram. Some of theWMAP sources have been missed because of source variability.
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Fig. 13.Histogram distribution of ERCSC flux densities at each band in gray. ERCSC sources that are matched withWMAP 5σ
sources in a similar band are shown as the red histogram. TheWMAP 7 year point source catalogue mask (see text) has been applied
to the ERCSC to ensure the same sky coverage.
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Fig. 14.Fractional difference between the ERCSC flux densities andWMAP flux densities at 30, 44, 70 and 100 GHz. The unit of
the abcissa is Jy while the ordinate shows the fractional difference. No correction has been applied to theWMAP flux densities to
account for the difference in bandpass compared toPlanck. The agreement is good but the significant scatter that can beseen is
most likely due to source variability.
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