Cycle-1 Accepted Proposal Statistics

May 2004

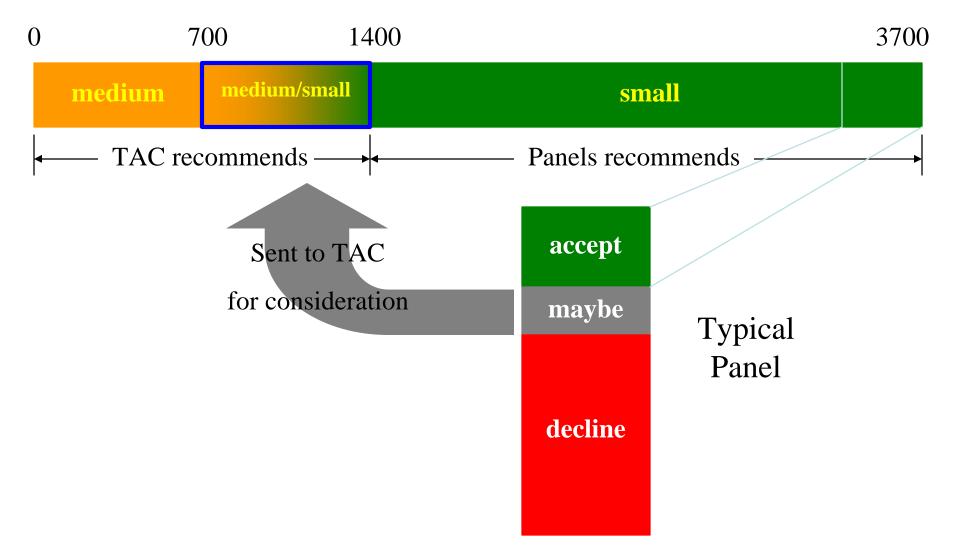
The Review Process

Topical Science Review Panels

- Nine Science Review Panels
 - Typically eight members each
 - Parallel Panels for all topics (ex. Solar System)
 - Four Extragalactic Panels
 - Panels 1A/B: Distant Universe
 - Panels 2A/B: Nearby Universe
 - Four Galactic Panels
 - Panels 3A/B: Stars & ISM
 - Panels 4A/B: Star & Planet Formation
 - One Solar System Panel
 - Panel 5: Solar System (6.6% of incoming proposals)

Panel Membership

- Who could NOT serve?
 - SSC
 - IPAC
 - JPL
 - Caltech
 - Guaranteed Time Observers (including Inst Team Pls)
 - Legacy Science Pls
- Who was eligible?
 - Everyone else
 - Junior members of Instrument Teams & Legacy Science teams
- Diversity
 - National/geographic
 - Gender
 - Age/experience
 - Home institution size
- 73 external scientists served on Panels/TAC
 - 16 members (22%) were foreign
 - 16 members were women


Conflicts of Interest

- Minimized by parallel Panels
 - Investigator/Panelists had proposals reviewed in parallel Panel
- Types of Conflicts
 - Proposal PI or Co-I (see above)
 - Research
 - SSC identified (via ADS) possible research conflicts
 - If any identified, SSC avoided proposal review assignments
 - Institutional
 - SSC avoided proposal review assignments
 - Other
 - Usually self-declared by reviewers prior to Panels/TAC meeting
 - SSC swapped/omitted review assignments, when necessary
- Conflicts of Interest
 - Documented by SSC and Panel Chair
 - "Conflicted" reviewers excused from discussion/grading of proposals & direct competitors

Review Process (1): Overview

- Each Panel reviewed 70-80 proposals (typically)
 - Output: Single rank-ordered list of all proposals (small GO, medium GO, AR)
- Each Panel given minimum time allocation (T_{min})
 - Based on proportion of small GO proposals assigned to Panel
 - Panel allocated this time to high-ranked small GO proposals
 - TAC concurred on Panel recommendations
 - Pending duplicate observations
- Each Panel given maximum time allocation (T_{max})
 - Produces "gray area" of pending small GO proposals
 - Panels carefully debated & ranked "gray area" proposals
 - Eventual disposition depends on TAC allocation to median GO proposals

Review Process (2): Observing Time Allocations

The Results

TAC Recommended 9 Medium GO Programs (854 hours)

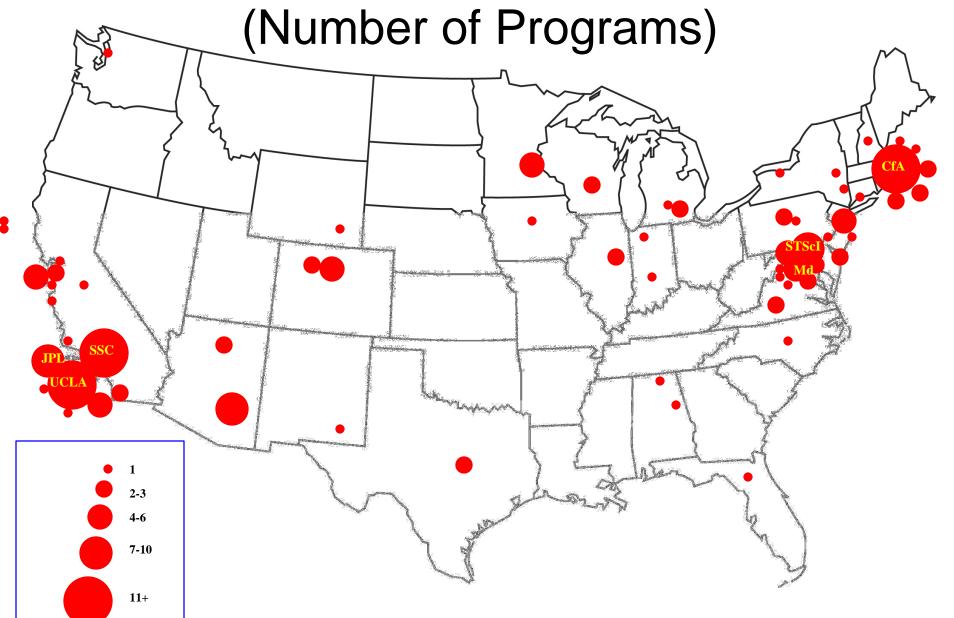
- Peter Garnavich (Notre Dame): 73.8 hours (Targets of Opportunity)
 - Gamma-Ray Burst Physics in the Spitzer/Swift Era
- Lin Yan (SSC/IPAC/Caltech): 65.0 hours
 - IRS Spectroscopy of Dusty Galaxies at z~1-2: Bridging the Gap Between ISO and SCUBA
- Ismael Perez-Fournon (IAC, Spain): 65.9 hours
 - IRS Observations of Ultraluminous ELAIS Galaxies
- Sylvain Veilleux (Maryland): 95.3 hours
 - Evolution of Activity in Massive Gas-Rich Mergers
- Joe Mazzarella (IPAC/Caltech): 91.6 hours
 - Spitzer Observations of a Complete Sample of Luminous IR Galaxies in the Local Universe
- Claus Leitherer (STScI): 54.4 hours
 - The Rich and the Poor: Wolf-Rayet Star Populations in Different Chemical Environments
- Deborah Padgett (SSC/IPAC/Caltech): 134.4 hours
 - A Spitzer Imaging Survey of the Entire Taurus Molecular Cloud
- Will Grundy (Lowell Observatory): 102.4 hours
 - The Dynamical History of the Classical Kuiper Belt: Radiometric Diameters and Albedos
- Mark Sykes (Arizona): 170.9 hours
 - The Production of Zodiacal Dust by Asteroids and Comets

GO Investigations

<u>Domestic</u>	# programs	<u>hours</u>	% of time
Spitzer Sci Ctr	13	371	10.1
IPAC (excl. SSC)	2	99	2.7
JPL	7	143	3.9
Caltech (campus)	5	114	3.1
Other Universities	97	1582	43.2
Non-Profits	10	204	5.6
STScl	7	143	3.9
NASA	6	84	2.3
Federal Labs	3	71	1.9
Industry	1	10	0.3
<u>Foreign</u>			
ESA	43	709	19.3
Japan	4	52	1.4
Other	5	83	2.3

GO Program Success Rates

	Proposals Obse	rving Time
All Medium Proposals	25 % (9 of 36)	23 %
All Small Proposals	36 % (194 of 538)	28 %
Caraian lad	22.0/ (== -1.==)	35 0/
Foreign-led	33 % (52 of 157)	25 %
Spitzer Science Center	32 % (13 of 41)	36 %


Foreign Investigations

- Foreign-led investigations
 - Account for 26% of the recommended GO programs
 - Account for 23% of the recommended observing time
- Foreign-only investigations
 - Account for 13% of the recommended GO programs
 - Account for 10% of the recommended observing time

TAC Recommended 9 AR Programs (\$698K)

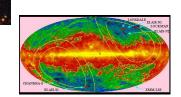
- Eric Richards (Talladega College)
 - FIR Properties of a Large Radio-Selected Sample in the Spitzer FLS
- Gordon Richards (Princeton)
 - Optical-IR SEDs of SDSS Quasars in the Archival Spitzer FLS Data
- Alexander Kashlinksy (SSAI)
 - Structure of Cosmic IR Background from the FLS
- Lisa Storrie-Lombardi (SSC)
 - The Spitzer FLS Extragalactic SED Database
- Bruce Grossan (Eureka Scientific)
 - Cosmic FIR Background Fluctuation Studies of the FLS
- Matthew Malkan (UCLA)
 - FIR Measurement of AGN & Starburst Activity in the FLS
- Kenneth Marsh (JPL)
 - Resolution-Enhanced Imaging of the FLS Galactic & Extragalactic Components
- Russell Walker (MIRA)
 - A Search for Comet Debris Trails in the Spitzer FLS Fields
- Edward Tedesco (Planetary Science Institute)
 - Enhancing Science From the Spitzer Ecliptic Plane Survey

U.S. Geographic Distribution

US-based GO+AR Investigators (Principal Investigators & Co-

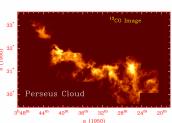
International Distribution (Number of Programs)

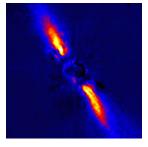
Germany	14	(7)
UK	12	(7)
France	6	(2)
Netherlands	4	(2)
Japan	4	(0)
Belgium	3	(1)
Australia	2	(1)
Hungary	2	(2)
Italy	2	(0)
Austria	1	(1)
India	1	(1)
Spain	1*	(1)

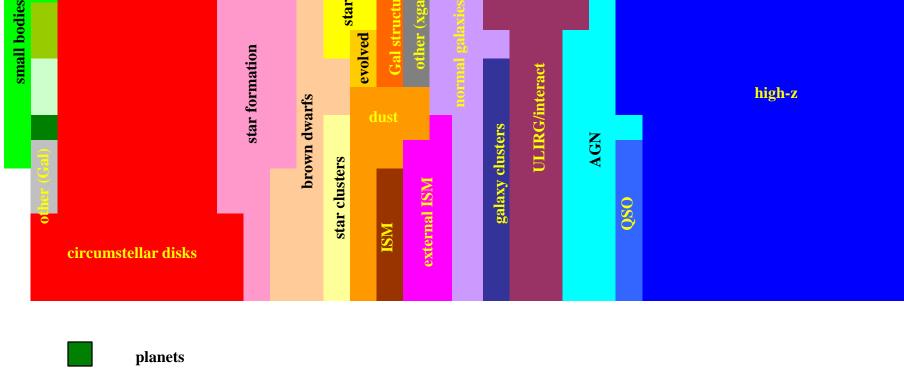

Figures in parentheses denote # with US participation (*) Medium

The Science

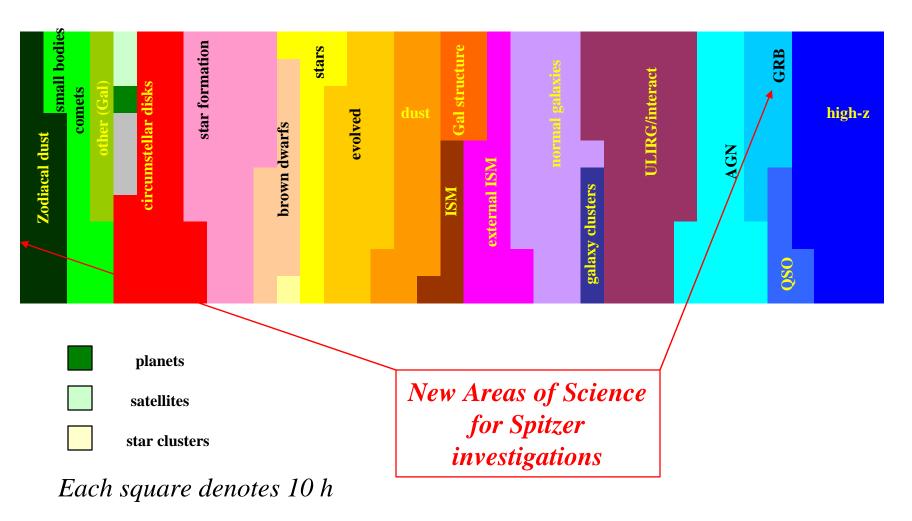
Context: Legacy Science Program

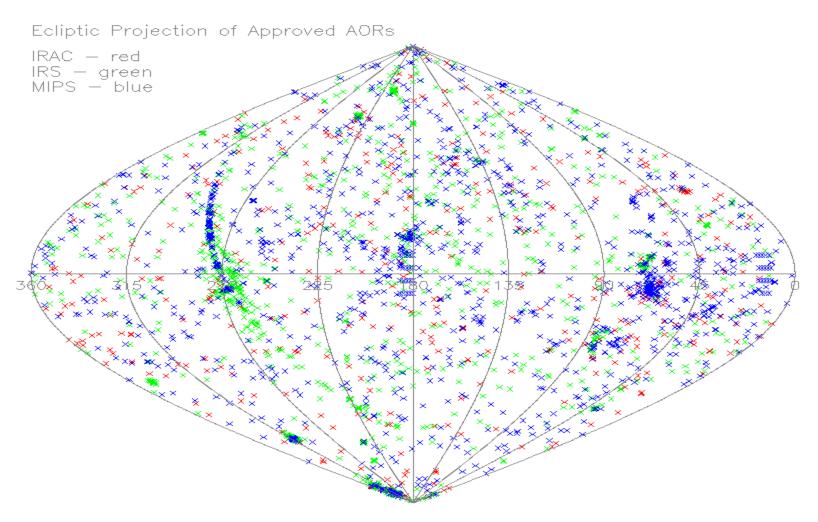

(3160 hours)


- Mark Dickinson (NOAO) & 39 Co-ls @ 14 institutions "GOODS: Great Observatories Origins Deep Survey" 647 hours (IRAC, MIPS)
- Carol Lonsdale (IPAC/Caltech) & 19 Co-ls @ 9 institutions
 "SWIRE: Spitzer Wide-area Infrared Extragalactic Survey"
 851 hours (IRAC, MIPS)
- Robert Kennicutt (U. Arizona) & 14 Co-ls @ 7 institutions
 "SINGS: Spitzer Nearby Galaxies Survey"
 512 hours (IRAC, MIPS, IRS)
- Ed Churchwell (U. Wisconsin) & 13 Co-ls @ 6 institutions "Galactic Legacy Infrared Mid-Plane Survey Extraordinaire" 400 hours (IRAC)
- Neal Evans II (U. Texas) & 10 Co-ls @ 8 institutions
 "c2d: Cores to Disks"
 400 hours (IRAC, MIPS, IRS)
- Michael Meyer (U. Arizona) & 18 Co-ls @ 12 institutions "FEPS: Formation and Evolution of Planetary Systems" 350 hours (IRAC, MIPS, IRS)

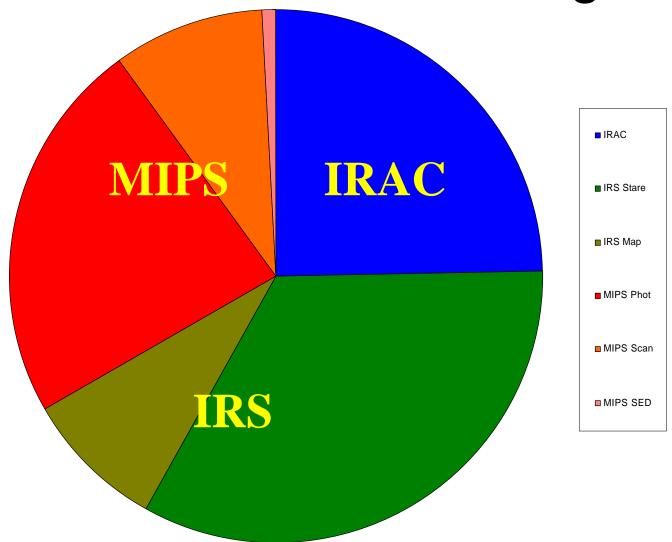


Context: Existing GTO Program




satellites comets

Each square denotes 10 h


Recommended Cycle-1 Programs (3700 hours over 11 months)

Sky Distribution of Targets

Instrument/Mode Usage

