The Space InfraRed Telescope Facility - SIRTF

SIRTF – an Overview

Jay A. Frogel
SIRTF Program Scientist, NASA

Michael Werner
SIRTF Project Scientist, JPL/Caltech

January, 2003
The familiar constellation Orion looks dramatically different in the infrared than in the visible; SIRTF will open the infrared window on the Universe.
Two Key Science Questions for SIRTF

What did the Early Universe look like?

How do Stars and Planetary Systems form and evolve?
Contrasting Views Towards the Central ~100 Light Years of our Milky Way Galaxy dramatize the complementarity of NASA’s three operating Great Observatories: SIRTF (Infrared), Hubble (Optical), and Chandra (Xray).
Why Infrared Astronomy?

Infrared Observations Probe:

- **The Dusty Universe**
 Much IR light comes from diffuse clouds of interstellar dust and gas that are opaque to visible light.

- **The Distant Universe**
 Most of the light that comes to us from distant galaxies is in the infrared.

- **The Cold Universe**
 Much of the IR light that is seen comes from cold clouds of interstellar and circumstellar gas and dust.
Why Infrared from Space?

- The Earth’s atmosphere absorbs most of the radiation falling on it from space, especially in the infrared.

- The Earth’s atmosphere is warm and emits copious amounts of infrared radiation that greatly limit the ability to measure faint objects from the ground. Space is cold.
Almost half of the energy emitted in the Universe after the Big Bang is in the infrared. SIRTF will search for its origin.
When Did the Youngest and Most Luminous Galaxies Form?

The deepest images taken by the Hubble Space Telescope, Chandra X-Ray Observatory, and SIRTF will be in the same patch of sky. Together, these coordinated panchromatic images will show us what galaxies looked like when they were first forming when the Universe was <10% its current age.

Because SIRTF will be extraordinarily sensitive to mid-IR radiation (~10 to 160 microns) it will be able to detect the youngest and most luminous galaxies. Their radiation, nearly all of which is emitted in the mid-IR, comes from stars in the process of forming and from dust clouds.
SIRTF's predecessor, IRAS, found a class of luminous “starburst” galaxies undergoing runaway star formation. Much of this star formation is obscured by dust and invisible in the UV or optical.

... however, IRAS was only sensitive to local galaxies going through such a phase.

SIRTF will vastly improve the census of luminous starbursts across cosmic history. These galaxies pinpoint where approximately half the stars in the Universe were formed.
How Do Stars and Planets Form and Evolve Now?

◆ New stars are still forming today from the dust and gas in dark interstellar clouds.

◆ Planets form in large disk-shaped clouds circling newborn stars.

◆ These “circumstellar” disks are best seen in infrared light.

◆ SIRTF can study the evolution of disks in the key phase of Earthlike planet formation.
What is the Raw Material for Planet Formation?

- The dust particles which form planets glow brightest at the infrared wavelengths where SIRTF will be observing.
- Comets in our own solar system also give off dust particles. SIRTF will show how the composition of our solar system relates to that of other planetary systems.
How Can SIRTF Sense Planets Around Other Stars?

- Even when a planet itself is too faint to see directly, its gravitational influence on its star’s dust disk can still be visible, just as small moons sculpt Saturn’s rings.

- SIRTF will provide the first images of many nearby circumstellar disks. Holes, clumps, or sharp edges in these disks may betray the presence of planets.
The SIRTF Observatory

- Multi-purpose observatory cooled passively and with liquid-helium for astronomical observations in the infrared
- Launch in April 2003 for a 2.5 to 5 year mission
- Provides a >100 fold increase in infrared capabilities over all previous space missions
- Completes NASA’s Great Observatories
- Provides critical precursor science for NASA’s Origins Theme

Assembled SIRTF Observatory at Lockheed-Martin, Sunnyvale.

Key Characteristics:
- Aperture – 85 cm
- Wavelength Range: 3-to-180um
- Telescope Temperature – 5.5K
- Mass – 870kg
- Height – 4m
SIRTF’s Design Provides Huge Savings

- The SIRTF telescope will be launched warm and cooled down in orbit.
- A cool down in orbit is possible because it will be a solar orbit.
- This novel approach yields significant **cost and weight savings** over cold launch designs with **no reduction in telescope size** for a given desired lifetime.
- Future NASA missions, e.g. TPF & JWST, will use this same approach.

<table>
<thead>
<tr>
<th>Cold launch</th>
<th>Architecture</th>
<th>Warm launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Orbit</td>
<td>Type of Orbit</td>
<td>Solar Orbit</td>
</tr>
<tr>
<td>5700 kg</td>
<td>Launch Mass</td>
<td>870 kg</td>
</tr>
<tr>
<td>3800 liters</td>
<td>Cryogen Volume</td>
<td>360 liters</td>
</tr>
<tr>
<td>5 years</td>
<td>Lifetime</td>
<td>5 years</td>
</tr>
<tr>
<td>~$2.2 B</td>
<td>Development Cost</td>
<td>$0.74 B</td>
</tr>
<tr>
<td>Titan IV</td>
<td>Launch Vehicle</td>
<td>Delta</td>
</tr>
<tr>
<td>~$0.4B</td>
<td>Launch Cost</td>
<td>$0.07B</td>
</tr>
</tbody>
</table>
Why a Better Choice?

- Better Thermal Environment (allows passive cooling)
- No Need for Earth-Moon Avoidance (Maximizes observing time)
- No Earth Radiation Belt (no damage to detectors or electronics)

\[\text{Distance of SIRTF from the Earth as it slowly drifts away.} \]

“Loops” and “kinks” in SIRTF’s orbit occur at 1-year intervals.

Observatory position on February 3, 2007

Distance of SIRTF from the Earth as it slowly drifts away.

0.2 AU

0.4 AU

0.6 AU
SIRTF’s Three Instruments Use State-of-the-Art Detectors

SIRTF technologies available to be used in future missions include:

- High Performance IR Detector Arrays (possible use in TPF, JWST)
- Lightweight all-Beryllium Telescope Optics at Low T (possible use in JWST)
- Efficient cooling system combining stored cryogens and passive cooling (TPF, JWST)
- Observatory operations in distant orbit (JWST, SIM, TPF)

Instrument integration at Ball Aerospace
The SIRTF Team & The User Community

Major Industrial participation

TELESCOPE (BATC)

CRYOSTAT (BATC)

SPACECRAFT
Lockheed Martin

Three University-Based Instrument teams

SCIENCE INSTRUMENTS:
- IRAC (SAO/GSFC)
- IRS (Cornell/BATC)
- MIPS (U of AZ/BATC)

75% of the observing time is open to entire science community; funding of order $20M/yr

User Community

SIRTF Science Center (SSC) Caltech

Education & Public Outreach

Interface between SIRTF and the science community

Deep Space Network

Flight Operations Center (JPL)
Bilingual webpages and presentations to public school students to help spread science literacy.
The assembled SIRTF Observatory has been under test for more than a year.

The hardware is complete, and all environmental tests have been completed successfully.

The final refinements to the flight software and to the operational systems are being put into place.

The scientific programs for the first year of the mission have been defined.

Remaining milestones:
- March 3 – ship to KSC
- April 15 – launch window opens
- Launch + 3 mos – start of science ops
- Launch + 4 mos – first data release
The Scientific Promise of SIRTF Will be Fulfilled this Year

“The highest priority for a major new program in space-based astronomy is the Space Infrared Telescope Facility (SIRTF).”

“SIRTF remains unparalleled in its potential for addressing the major questions of modern astrophysics.”

National Research Council, Committee on Astronomy and Astrophysics, 1994

“Taken together, the projects we recommend represent an exciting use of NASA’s next major astrophysical observatory. Each of the projects will yield superb science that we expect of a major investment of time in a NASA Great Observatory. A hallmark of each of these projects is that they fully exploit the unique and special capabilities of SIRTF that make it a major NASA mission and the highest priority space project of the 1991 National Academy of Sciences Decade Review.”

Letter from SIRTF Legacy Science TAC Chair, John Bahcall, to SSC Director Tom Soifer (November, 2000)