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Figure 15. 0.3–10 µm transmission spectrum of HD-189733b including all the high-precision measurements available in the literature (Hubble/
STIS–ACS–WFC3–NICMOS, Spitzer/IRAC from space, IRTF/SpeX from the ground). The data points observed simultaneously are plotted with the same color.
We stress that combining multiepoch data sets is a risky operation: instrumental systematics and stellar activity may prevent altogether an accurate measurement of
the absolute transit depth. Black plot: simulated atmospheric spectrum with water vapor, methane, carbon dioxide, and hazes/clouds. Orange plot: modeled spectrum
with water vapor, methane, and different haze/cloud contributions. Violet plot: simulated atmospheric spectrum including only water vapor and hazes/clouds. Light
blue plot: cloud-free spectrum with water vapor. Note that we plot the newest reanalysis of the STIS, ACS, and WFC3 data sets made by the same authors (Pont et al.
2013). For the original analyses please refer to Pont et al. (2008), Sing et al. (2011), Huitson et al. (2012), and Gibson et al. (2012a). Figure 16 shows a zoom in on
the 1.4–2.5 µm range.
(A color version of this figure is available in the online journal.)
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Figure 16. A zoom in of all of the measurements available for the H and K bands.
(A color version of this figure is available in the online journal.)

2. Once converged, there is little improvement in terms of
error-bars by increasing X since the common signal will
not diminish and the independent noise component has
already converged to near-zero rms. This is in contrast to the
more familiar central limit theorem when taking arithmetic
means.
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Primary	  transit	  

•  Transmission	  spectroscopy	  

•  Molecular	  absorbers,	  clouds	  

•  Transit	  depth	  <	  3%	  

•  Photometric	  precision	  ~10-‐4	  

Secondary	  eclipse	  

•  Emission	  spectroscopy	  

•  Thermal	  radiaJon,	  albedo	  

•  Eclipse	  depth	  <	  0.3%	  

•  Photometric	  precision	  ~10-‐4	  

Beyond	  the	  na2ve	  precision	  of	  current	  instruments	  
	  
Data	  detrending	  is	  needed	  to	  reduce	  instrumental	  systemaJcs	  



Spitzer	  Space	  Telescope	  



Spitzer	  pixel-‐phase	  effect	  
– 11 –
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Fig. 2.— Top panel: Representation of one simulated frame onto the focal plane. Bot-

tom panels: simulated time series associated to selected individual pixels (blue and red),

a centered 5⇥5 array (green), and a centered 9⇥9 array (black). The centroid is assumed

oscillating in the direction indicated by the double-headed arrow, with a sinusoidal pattern

(sin1, see Tab. 2).
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Fig. 2.— Top panel: Representation of one simulated frame onto the focal plane. Bot-

tom panels: simulated time series associated to selected individual pixels (blue and red),

a centered 5⇥5 array (green), and a centered 9⇥9 array (black). The centroid is assumed

oscillating in the direction indicated by the double-headed arrow, with a sinusoidal pattern

(sin1, see Tab. 2).
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Parametric	  detrending	  
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Figure A1. Raw photometric data for 3.6 and 4.5 µm obtained with IRAC. Each sub-panel has the same structure showing from top to bottom: the variation of the
centroid position in X, in Y, and lastly the predicted baseline flux using pixel-phase correction. The lowest panel of each plot is the primary transit and overplotted the
50-point median-stack smoothing. They provide a synoptic view of the systematic trends present in IRAC primary transit data.
(A color version of this figure is available in the online journal.)
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•  Measured	  flux	  is	  
correlated	  with	  
centroid	  coordinates;	  

•  Detrending	  by	  division	  
for	  a	  polynomial	  
funcJon	  of	  centroid	  
coordinates.	  

•  Which	  degree	  of	  the	  
polynomial?	  

•  How	  to	  es2mate	  
centroid?	  

•  Is	  this	  the	  only	  effect?	  



Newer	  detrending	  techniques	  for	  Spitzer	  

•  SpaJal	  weighJng	  funcJons	  (e.g.	  Ballard	  et	  al.	  2010,	  
Cowan	  et	  al.	  2012,	  Lewis	  et	  al.	  2013)	  

•  Bliss	  mapping	  (Stevenson	  et	  al.	  2012,	  b)	  
•  Independent	  Component	  Analysis	  (Morello	  et	  al.	  
2014,	  2015,	  Morello	  2015)	  

•  Pixel-‐level	  decorrelaJon	  method	  (Deming	  et	  al.	  
2014)	  

•  Gaussian	  Processes	  (Gibson	  et	  al.	  2012,	  Evans	  et	  al.	  
2015)	  

	  



Independent	  Component	  Analysis	  

•  Blind	  Source	  Separa2on	  technique,	  i.e.	  
no	  prior	  knowledge	  of	  the	  instrument	  
systemaJcs	  

•  Applicable	  in	  a	  general	  context,	  not	  just	  IRAC	  
light-‐curves	  	  



ICA	  in	  astrophysics	  
•  ICA	  has	  been	  used	  to	  separate	  the	  cosmic	  microwave	  
background	  or	  signatures	  from	  distant	  galaxies	  from	  
their	  galacJc	  foregrounds	  and	  instrumental	  noise	  
(e.g.	  SJvoli	  et	  al.	  2006,	  Maino	  et	  al.	  2002,	  2007,	  
Aumont	  &	  Macías-‐Pérez	  2007,	  Wang	  et	  al.	  2010).	  
	  

•  ICA	  has	  been	  used	  to	  detrend	  exoplanetary	  light-‐
curves	  taken	  with	  different	  instruments	  (Waldmann	  
et	  al.	  2013,	  Waldmann	  2012,	  2014).	  



Independent	  Component	  Analysis	  

Sources	   Mixtures	  

Independent	  Com
ponent	  Analysis	  

Separated	  sources	  



ICA:	  mathema2cal	  model	  

X	  =	  AS	  
observaJons	   signals	  

mixing	  	  matrix	  

S	  =	  A-‐1X	  
UNKNOWN	  



ICA:	  sta2s2cs	  (1)	  

Since Vx has uncorrelated components, one could hope Vx = s, i.e. the
problem is already solved. However, it does not happen. In fact, a generic
orthogonal transformation of the vector signal Vx has still uncorrelated com-
ponents. This process does not allow to find which one has indipendent com-
ponents. (Hyvarinen, Karhunen, and Oja 2001)
Nevertheless, whitening is a useful preprocessing step, because the matrix
VA is orthogonal. This allows to restrict the search for the mixing matrix
in the space of orthogonal matrices, reducing the number of free parameters
from n2 to n(n � 1)/2. Being whitening a much simpler process than ICA,
this is computationally advantageous. (Hyvarinen, Karhunen, and Oja 2001)

D.2 ICA estimators

In this section I will show the main estimators used to perform ICA. Essen-
tially, they are mathematically equivalent, di↵ering in statistical properties
such as consistency, asymptotic variance, robustness and in computational
simplicity and e�ciency.

D.3 Estimators

D.3.1 Entropy

Entropy is the basic concept of Information Theory. For a random vector
y = (y

1

, y
2

, ..., yn) it is defined as:

H(y) = �
Z

p(y) log p(y) dy for continuous variable (D.8)

H(y) = �
X

k

p(yk) log p(yk) for discrete variable (D.9)

Note that yk = (yk11, yk22, ..., yknn) in D.9.
It is the optimal measure of the uncertainty associated with a random vari-
able. In fact, in the discrete case:

• H is maximum if all the possible exits for the variables are equiprobable;

• H is minimum, that is zero, if there is only one exit with probability 1
and the others with probability 0.

While, in the continuous case:

• H is small, that is negative with big absolute value, if p(y) is concen-
trated in a strict interval, assuming high values.
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Shannon	  entropy	  

It	  is	  the	  staJsJcal	  measure	  of	  uncertainty	  
associated	  with	  a	  random	  variable.	  

D.3.2 Mutual information

Mutual information measures the informations that members of a set of ran-
dom variables have on the other random variables in the set. For a random
vector y = (y

1

, y
2

, ..., yn) it is defined by

I(y
1

, y
2

, ..., yn) =
nX

i=1

H(yi)�H(y) (D.10)

where H is the entropy function.
It is intuitive that maximization of indipendence is equivalent to minimiza-
tion of mutual information. Using Equation 2.4, mutual information for
source signals results:

I(s
1

, s
2

, ..., sn) =
X

i

H(si)�H(x)� log|det(W)| (D.11)

If the yi are constrained to be uncorrelated and of unit variance, det(W) is
constant, so that the last term in Equation D.11 has no e↵ect in finding the
minimum of mutual information.
Mutual information is not really used because its complexity. Other estima-
tors are all related to mutual information.

D.3.3 Negentropy

Among all the distributions with fixed mean and covariance matrix, the
gaussian distribution has the maximum entropy. This property suggests to
define negentropy as an estimator of nongaussianity:

J(y) = H(ygauss)�H(y) (D.12)

where ygauss is a random gaussian vector with the same covariance matrix of
y. Negentropy is zero if y is gaussian, positive in other cases.
Thus minimization of mutual information equivals maximization of the sum
of the nongaussianities of the estimated components.
The entropy of a gaussian random vector can be evaluated as

H(ygauss) =
1

2
log |det(C)|+ n

2
[1 + log(2⇡)] (D.13)

where C is the covariance matrix and n is the dimension of y.
An important property of negentropy is scale-invariance, which justify the
ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.
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mutual	  informaJon	  

maximum	  independence	  =	  minimum	  mutual	  informaJon	  

D.3.2 Mutual information
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where ygauss is a random gaussian vector with the same covariance matrix of
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ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.
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ICA:	  sta2s2cs	  (2)	  
Among	  all	  the	  distribuJons	  with	  fixed	  mean	  and	  covariance,	  
the	  gaussian	  distribuJon	  has	  the	  maximum	  entropy.	  

D.3.2 Mutual information

Mutual information measures the informations that members of a set of ran-
dom variables have on the other random variables in the set. For a random
vector y = (y

1

, y
2

, ..., yn) it is defined by

I(y
1

, y
2

, ..., yn) =
nX

i=1

H(yi)�H(y) (D.10)

where H is the entropy function.
It is intuitive that maximization of indipendence is equivalent to minimiza-
tion of mutual information. Using Equation 2.4, mutual information for
source signals results:
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H(si)�H(x)� log|det(W)| (D.11)

If the yi are constrained to be uncorrelated and of unit variance, det(W) is
constant, so that the last term in Equation D.11 has no e↵ect in finding the
minimum of mutual information.
Mutual information is not really used because its complexity. Other estima-
tors are all related to mutual information.

D.3.3 Negentropy

Among all the distributions with fixed mean and covariance matrix, the
gaussian distribution has the maximum entropy. This property suggests to
define negentropy as an estimator of nongaussianity:

J(y) = H(ygauss)�H(y) (D.12)

where ygauss is a random gaussian vector with the same covariance matrix of
y. Negentropy is zero if y is gaussian, positive in other cases.
Thus minimization of mutual information equivals maximization of the sum
of the nongaussianities of the estimated components.
The entropy of a gaussian random vector can be evaluated as

H(ygauss) =
1

2
log |det(C)|+ n

2
[1 + log(2⇡)] (D.13)

where C is the covariance matrix and n is the dimension of y.
An important property of negentropy is scale-invariance, which justify the
ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.
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negentropy	  

•  Mutual	  informaJon	  and	  negentropy	  are	  hard	  compuJng.	  
	  

•  AlternaJvely,	  we	  can	  maximize	  non-‐gaussianity	  of	  the	  
source	  signals,	  through	  different	  esJmators.	  

	  

D.3.4 Kurtosis

Kurtosis is a fourth order function of the moments of the pdf. In the zero-
mean case it is defined by

kurt(y) = E(y4)� 3E(y2)2 (D.14)

where E means the expectation value of its argument, or in the normalized
form by

˜kurt(y) =
E(y4)

E(y2)2
� 3 (D.15)

Gaussian random variables have zero kurtosis, those with positive kurtosis
are called supergaussian, and are more peaked, those with negative kurtosis
are called subgaussian, and are flatter. There exist also nongaussian random
variables with zero kurtosis, but they are very rare. For these reasons kur-
tosis, or rather its absolute value, is used as a measure of nongaussianity.
Being y

1

and y
2

two scalar random variables and ↵ a numerical constant, the
following linearity properties are valid:

kurt(y
1

+ y
2

) = kurt(y
1

) + kurt(y
2

) (D.16)

kurt(↵y
1

) = ↵4kurt(y
1

) (D.17)

The major advantage of kurtosis is its semplicity, but it is not an optimal
estimator, because its range, i.e. [�2,+1[, is not symmetric. In addition, it
is very sensible to outlayers.

D.3.5 Temporal correlations

Independent signals must be uncorrelated, that is:

E{si(t)sTj (t)} = ⇢i�ij (D.18)

Uncorrelatedness is not a su�cient condition for independence. Two signals
are independent if also time-lagged covariances are zero:

E{si(t+ ⌧)sTj (t)} = ⇢i(⌧)�ij (D.19)

This means that time-lagged covariance matrices of independent source sig-
nals are diagonal.
Using Equation 2.4:

E{Wxi(t+ ⌧)xT
j (t)W

T} = WE{xi(t+ ⌧)xT
j (t)}WT = ⇢i(⌧)�ij (D.20)
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kurtosis	  

Being W = A�1 and x signal whitened, Equation D.20 becomes:

ATE{xi(t+ ⌧)xT
j (t)}A = ⇢i(⌧)�ij (D.21)

The mixing matrix is an approximate joint diagonalizator of several time-
lagged covariance matrices.
A measure of deviation from diagonality for a matrix M is:

off(M) =
X

i 6=j

|Mij|2 (D.22)

D.4 ICA algorithms

As expected in light of the discussion in the previous section, there are many
algorithms that implement the ICA technique. I will not present all the exist-
ing algorithms, but only the ones used in my project and their propedeutics,
pointing out the di↵erence in terms of performance. It will be assumed to
work with whitened data.

D.4.1 Negentropy approximations: contrast functions

Hyvarinen in 1998 developed a class of approximations for negentropy (Hy-
varinen 1999):

J(y) ⇡
pX

i=1

ki[E{Gi(y)}� E{Gi(⌫)}]2 (D.23)

where ki are some positive constants, and ⌫ is a random gaussian variable of
zero mean and unit variance, the variable y is assumed to be of zero mean
and unit variance, and the functions Gi are non quadratic. The Gi functions
are called “contrast functions”. Often, only one contrast function is used, so
that Equation D.23 becomes:

J(y) / [E{G(y)}� E{G(⌫)}]2 (D.24)

The choice of the contrast functions is important to optimize the perfor-
mances of the algorithm. This is discussed in the following paragraphs for
specific algorithms.

D.4.2 E�ciency and Cramér-Rao Lower Bound

If the source signals si and the mixing matrix A are known, which tipically
only happens in tests, it is possible to evaluate the quality of the separation,
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Mul2ple	  observa2ons	  
•  Spectroscopically	  resolved	  light-‐curve,	  i.e.	  simultaneous	  

observaJons	  in	  different	  wavelength	  ranges	  (e.g.	  Waldmann	  
et	  al.	  2013,	  Waldmann	  2012,	  2014)	  

•  MulJple	  photometric	  observaJons	  of	  the	  same	  target	  (e.g.	  
Waldmann	  2012)	  

•  Individual	  pixel-‐Jmes	  series	  (e.g.	  Morello	  et	  al.	  2014,	  2015,	  
Morello	  2015)	  

Figure 3.1: Left: representation of point source spread in more than one
pixel; Middle: representation of a gaussian fit on the PRF; Right: the corre-
spondance between the image on the detector and the intensity profile of the
fitted PRF; it is shown how the global PRF is the sum of the contributions
from individual pixels.

If the position of the star on the detector is stable, as in many Spitzer ob-
servations, including the ones I analyzed, there are pixels detecting the as-
trophysical signals at any time. My idea is to use simultaneous lightcurves
of individual pixels (in the following pixel-lightcurve), that is the temporal
series of lectures from single pixels, as mixed signals from which to extract
the independent components. In an ideal case, i.e. a star with a gaussian pdf
with a fixed centroid on the detector and all pixels equivalent, each pixel-
lightcurve is a scaled version of the global lightcurve. In the ideal case it is
true that each pixel-lightcurve would contain the same source signals, but
with the same relative mixing coe�cients, in other words the rows of the
mixing matrix A (see Eq. 2.3) would be all proportional to the first row, so
that A is a not invertible matrix with rank(A) = 1, therefore no separations
would be possible. However the telescope pointing is subject to jitter and
the source moves slightly with respect to the pixels during the whole obser-
vation. I found, through a few simulations, that introducing a fluctuation of
the centroid with a semiamplitude of a few tenths of the pixel length, that
is of the order of centroid fluctuations in Spitzer lightcurves that I analyze
in this Thesis, it is possible to separate several components. If confirmed
this fact, it would be quite useful and interesting, because centroid fluctua-
tions are present in every observation, and they should be crucial to perform
astrophysical signals decompositions, while up to now they have been con-
sidered as a disturbance. I suppose also that slight di↵erences in the pixels
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Pixel-‐lightcurves	  
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Simulated	  datasets	  (example	  1)	  

Φ
-0.05 0 0.05

N
or

m
al

iz
ed

 fl
ux

0.97

0.98

0.99

1

1.01
Raw 5x5, sin1, inter, PSF = 1

Φ
-0.05 0 0.05

0.97

0.98

0.99

1

1.01
Detrended

PCD
ICA

Morello	  2015,	  ApJ,	  808,	  56	  



Simulated	  datasets	  (example	  2)	  
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Simulated	  datasets	  (example	  3)	  
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Effect	  of	  Poisson	  noise	  (1)	  
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Effect	  of	  Poisson	  noise	  (2)	  
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Effect	  of	  Poisson	  noise	  (3)	  
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Conclusions	  
•  Transit/eclipse	  spectroscopy	  can	  be	  used	  to	  understand	  
exoplanets	  (composiJon,	  climate,	  history);	  

•  Data	  detrending	  methods	  are	  crucial	  to	  achieve	  the	  
target	  precision,	  i.e.	  ~10-‐4	  ;	  

•  Pixel-‐ICA	  is	  a	  blind	  signal-‐source	  separa2on	  method	  to	  
detrend	  systemaJcs	  from	  a	  single	  photometric	  
observa2on;	  	  

•  Consistent	  transit	  parameter	  results	  from	  mulJple	  
observaJons;	  

•  High	  performance	  over	  simulated	  datasets	  of	  primary	  
transits	  with	  instrument	  systemaJcs	  and	  noise.	  



Future	  projects	  

•  Reanalysis	  of	  archive	  datasets;	  
•  Improving	  detrending	  techniques	  through	  
instrument	  simulaJons;	  

•  OpJmizing	  the	  method	  for	  the	  case	  of	  
secondary	  eclipses	  (low	  signal-‐to-‐noise,	  
amplitude	  of	  the	  astrophysical	  signal	  smaller	  
than	  instrument	  systemaJcs);	  

•  Data	  analysis	  from	  different	  instruments,	  e.g.	  
Spitzer/IRS,	  other	  Spitzer/IRAC	  passbands.	  



Interference-‐to-‐Signal	  Ra2o	  
•  If	  the	  source	  signals	  and	  the	  true	  mixing	  matrix	  are	  known,	  it	  

is	  possible	  to	  test	  the	  goodness	  of	  the	  separaJon:	  

	  
•  In	  case	  of	  perfect	  demixing,	  the	  normalized	  gain	  matrix	  is	  the	  

idenJty.	  

•  For	  certain	  algorithms,	  it	  is	  possible	  to	  calculate	  asymptoJcal	  
expressions	  for	  the	  ISR	  matrix,	  which	  are	  independent	  on	  the	  
mixing	  matrix.	  

via the so called gain matrix G :

G = ŴA (D.25)

where Ŵ is the estimated demixing matrix. In case of perfect demixing, the
gain matrix G is a diagonal matrix, with the amplitudes of the estimated
source signals as diagonal elements. These are meaningless, as discussed in
2.2.3. This makes preferable to refer to the normalized gain matrix:

G̃ = ŴAD
1
2 (D.26)

where D is the diagonal matrix of the variances of the extracted source
signals. In case of perfect demixing, the normalized gain matrix G̃ is the
identity.
A nonzero term out of diagonal indicates the residual contamination of a
signal by another. The Interference-to-Signal Ratio (ISR) matrix is defined
by:

ISRij =
G̃

2

ij

G̃
2

ii

⇡ G̃
2

ij (D.27)

The interference-to-signal ratio for the ith estimated component is:

isri =

Pn
j=1,j 6=i G̃

2

ij

G̃
2

ii

(D.28)

A separation is perfect if the inferferences are all zeros, i.e. ISR is the identity
matrix. This is not feasible. There exists a theoretical lower limit for the
elements of ISR matrix, that is the Cramér Rao Lower Bound CRLB:

ISRij � CRLBij (D.29)

It is a general theorem of Information Theory, that limits inferiorly the vari-
ance of an unbiased estimator. A source separation is better as its ISR
elements are closer to the Cramér Rao Lower Bound.

D.4.3 FastICA

FastICA for one component

It consist in finding a weight vector w such that the projection wTx is maxi-
mally nongaussian, as measured by an approximation of negentropy via D.24,
with the conventional constraint ||w|| = 1. I denote with g the derivative of
G.
The FastICA algorithm for one unit is the following (Hyvarinen and Oja
2000):
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is the standard deviation of residuals
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the detrended light-curve. The sum on the left takes into account the precision of the

components extracted by the algorithm; �
ntc�fit

indicates how well the linear combination of

components approximates the out-of-transit. The MULTICOMBI code, i.e. the algorithm

that we use for the ICA transformation, provides two Interference-to-Signal-Ratio matrices,

ISREF and ISRWA, associated to the sub-algorithms EFICA and WASOBI, respectively.
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Eq. 3 is a worst-case estimate, while Eq. 4 takes into account the outperforming separation

capabilities of MULTICOMBI compared to EFICA and WASOBI. We adopt Eq. 4

throughout this paper, but results obtained with both options are reported in Tab. 7, 8, 9,

and 10. In most cases the di↵erences are negligible.
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